The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Methods for calculating the variance scale exponent to identify memory patterns in time series data. Includes tests for white noise, short memory, and long memory. See Fu, H. et al. (2018)<doi:10.1016/j.physa.2018.06.092>.
You can install the development version of vse4ts from GitHub with:
# install.packages("devtools")
::install_github("z-my-cn/vse4ts") devtools
Here is a basic example of how to use the vse
function
in the vse4ts package:
library(vse4ts)
set.seed(123)
<- rnorm(1024)
x <- vse(x)
x.vse print(x.vse)
#> [1] 0.4987233
This package also provides two hypothesis test functions
Wnoise.test
and SLmemory.test
to test the
white noise and short/long memory of a time series, respectively. Here
is an example of how to use the Wnoise.test
function and
SLmemory.test
function in the vse4ts package:
library(vse4ts)
# install.packages("pracma")
library(pracma)
data("brown72")
<- brown72
x
# Test white noise
Wnoise.test(x)
#> Wnoise Test
#>
#> Wnoise statistic: 135.1091
#> degrees of freedom: 31
#> p-value: 5.884182e-15
#>
#> alternative hypothesis: non-independent stochastic process
# Test long memory
SLmemory.test(x)
#> SLmemory Test
#>
#> SLmemory statistic: 21.20841
#> degrees of freedom: 31
#> p-value: 0.09369624
#>
#> alternative hypothesis: long memory
MIT © 2024 vse4ts authors
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.