Type: | Package |
Title: | Bayesian Generalized Linear Models with Time-Varying Coefficients |
Version: | 1.0.10 |
Description: | Efficient Bayesian generalized linear models with time-varying coefficients as in Helske (2022, <doi:10.1016/j.softx.2022.101016>). Gaussian, Poisson, and binomial observations are supported. The Markov chain Monte Carlo (MCMC) computations are done using Hamiltonian Monte Carlo provided by Stan, using a state space representation of the model in order to marginalise over the coefficients for efficient sampling. For non-Gaussian models, the package uses the importance sampling type estimators based on approximate marginal MCMC as in Vihola, Helske, Franks (2020, <doi:10.1111/sjos.12492>). |
License: | GPL (≥ 3) |
Suggests: | diagis, gridExtra, knitr (≥ 1.11), rmarkdown (≥ 0.8.1), testthat |
Depends: | bayesplot, R (≥ 3.4.0), rstan (≥ 2.26.0) |
Imports: | coda, dplyr, Hmisc, ggplot2, KFAS, loo, methods, Rcpp (≥ 0.12.9), RcppParallel, rlang, rstantools (≥ 2.0.0) |
LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.9), RcppArmadillo, RcppEigen (≥ 0.3.3.3.0), RcppParallel, rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0) |
SystemRequirements: | GNU make |
Biarch: | true |
VignetteBuilder: | knitr |
RoxygenNote: | 7.3.1 |
ByteCompile: | true |
URL: | https://github.com/helske/walker |
BugReports: | https://github.com/helske/walker/issues |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2024-08-29 17:11:57 UTC; jvhels |
Author: | Jouni Helske |
Maintainer: | Jouni Helske <jouni.helske@iki.fi> |
Repository: | CRAN |
Date/Publication: | 2024-08-30 06:40:02 UTC |
Coerce Posterior Samples of walker Fit to a Data Frame
Description
Creates a data.frame object from the output of walker fit.
Usage
## S3 method for class 'walker_fit'
as.data.frame(x, row.names = NULL, optional = FALSE, type, ...)
Arguments
x |
An output from |
row.names |
|
optional |
Ignored (part of generic |
type |
Either |
... |
Ignored. |
Examples
## Not run:
as.data.frame(fit, "tiv") %>%
group_by(variable) %>%
summarise(mean = mean(value),
lwr = quantile(value, 0.05),
upr = quantile(value, 0.95))
## End(Not run)
Extract Coeffients of Walker Fit
Description
Returns the time-varying regression coefficients from output of walker
or walker_glm
.
Usage
## S3 method for class 'walker_fit'
coef(object, summary = TRUE, transform = identity, ...)
Arguments
object |
Output of |
summary |
If |
transform |
Optional vectorized function for transforming the coefficients (for example exp). |
... |
Ignored. |
Value
Time series containing coefficient values.
Extract Fitted Values of Walker Fit
Description
Returns fitted values (posterior means) from output of walker
or walker_glm
.
Usage
## S3 method for class 'walker_fit'
fitted(object, summary = TRUE, ...)
Arguments
object |
Output of |
summary |
If |
... |
Ignored. |
Value
If summary=TRUE
, matrix containing summary statistics of fitted values.
Otherwise a matrix of samples.
Leave-Future-Out Cross-Validation
Description
Estimates the leave-future-out (LFO) information criterion for walker
and walker_glm
models.
Usage
lfo(object, L, exact = FALSE, verbose = TRUE, k_thres = 0.7)
Arguments
object |
Output of |
L |
Positive integer defining how many observations should be used for the initial fit. |
exact |
If |
verbose |
If |
k_thres |
Threshold for the pareto k estimate triggering refit. Default is 0.7. |
Details
The LFO for non-Gaussian models is (currently) based on the corresponding Gaussian approximation and not the importance sampling corrected true posterior.
Value
List with components ELPD
(Expected log predictive density), ELPDs
(observation-specific ELPDs),
ks
(Pareto k values in case of approximation was used), and refits
(time points where model was re-estimated)
References
Paul-Christian Bürkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-out cross-validation for Bayesian time series models, Journal of Statistical Computation and Simulation, 90:14, 2499-2523, DOI: 10.1080/00949655.2020.1783262.
Examples
## Not run:
fit <- walker(Nile ~ -1 +
rw1(~ 1,
beta = c(1000, 100),
sigma = c(2, 0.001)),
sigma_y_prior = c(2, 0.005),
iter = 2000, chains = 1)
fit_lfo <- lfo(fit, L = 20, exact = FALSE)
fit_lfo$ELPD
## End(Not run)
Posterior predictive check for walker object
Description
Plots sample quantiles from posterior predictive sample.
See bayesplot::ppc_ribbon()
for details.
Usage
plot_coefs(
object,
level = 0.05,
alpha = 0.33,
transform = identity,
scales = "fixed",
add_zero = TRUE
)
Arguments
object |
An output from |
level |
Level for intervals. Default is 0.05, leading to 90% intervals. |
alpha |
Transparency level for |
transform |
Optional vectorized function for transforming the coefficients (for example |
scales |
Should y-axis of the panels be |
add_zero |
Logical, should a dashed line indicating a zero be included? |
Plot the fitted values and sample quantiles for a walker object
Description
Plot the fitted values and sample quantiles for a walker object
Usage
plot_fit(object, level = 0.05, alpha = 0.33, ...)
Arguments
object |
An output from |
level |
Level for intervals. Default is 0.05, leading to 90% intervals. |
alpha |
Transparency level for |
... |
Further arguments to |
Prediction intervals for walker object
Description
Plots sample quantiles and posterior means of the predictions
of the predict.walker_fit
output.
Usage
plot_predict(object, draw_obs = NULL, level = 0.05, alpha = 0.33)
Arguments
object |
An output from |
draw_obs |
Either |
level |
Level for intervals. Default is 0.05, leading to 90% intervals. |
alpha |
Transparency level for |
Examples
set.seed(1)
n <- 60
slope <- 0.0001 + cumsum(rnorm(n, 0, sd = 0.01))
beta <- numeric(n)
beta[1] <- 1
for(i in 2:n) beta[i] <- beta[i-1] + slope[i-1]
ts.plot(beta)
x <- rnorm(n, 1, 0.5)
alpha <- 2
ts.plot(beta * x)
signal <- alpha + beta * x
y <- rnorm(n, signal, 0.25)
ts.plot(cbind(signal, y), col = 1:2)
data_old <- data.frame(y = y[1:(n-10)], x = x[1:(n-10)])
# note very small number of iterations for the CRAN checks!
rw2_fit <- walker(y ~ 1 +
rw2(~ -1 + x,
beta = c(0, 10),
nu = c(0, 10)),
beta = c(0, 10), data = data_old,
iter = 300, chains = 1, init = 0, refresh = 0)
pred <- predict(rw2_fit, newdata = data.frame(x=x[(n-9):n]))
data_new <- data.frame(t = (n-9):n, y = y[(n-9):n])
plot_predict(pred) +
ggplot2::geom_line(data = data_new, ggplot2:: aes(t, y),
linetype = "dashed", colour = "red", inherit.aes = FALSE)
Posterior predictive check for walker object
Description
Plots sample quantiles from posterior predictive sample.
Usage
## S3 method for class 'walker_fit'
pp_check(object, ...)
Arguments
object |
An output from |
... |
Further parameters to |
Details
For other types of posterior predictive checks for example with bayesplot
,
you can extract the variable yrep
from the output, see examples.
Examples
## Not run:
# Extracting the yrep variable for general use:
# extract yrep
y_rep <- extract(object$stanfit, pars = "y_rep", permuted = TRUE)$y_rep
# For non-gaussian model:
weights <- extract(object$stanfit,
pars = "weights", permuted = TRUE)$weights
y_rep <- y_rep[sample(1:nrow(y_rep),
size = nrow(y_rep), replace = TRUE, prob = weights), , drop = FALSE]
## End(Not run)
Predictions for walker object
Description
Given the new covariate data and output from walker
,
obtain samples from posterior predictive distribution for future time points.
Usage
## S3 method for class 'walker_fit'
predict(
object,
newdata,
u,
type = ifelse(object$distribution == "gaussian", "response", "mean"),
...
)
Arguments
object |
An output from |
newdata |
A |
u |
For Poisson model, a vector of future exposures i.e. E(y) = uexp(xbeta). For binomial, a vector containing the number of trials for future time points. Defaults 1. |
type |
If |
... |
Ignored. |
Value
A list containing samples from posterior predictive distribution.
See Also
plot_predict()
for example.
Predictions for walker object
Description
Given the new covariate data and output from walker
,
obtain samples from posterior predictive distribution for counterfactual case,
i.e. for past time points with different covariate values.
Usage
predict_counterfactual(
object,
newdata,
u,
summary = TRUE,
type = ifelse(object$distribution == "gaussian", "response", "mean")
)
Arguments
object |
An output from |
newdata |
A |
u |
For Poisson model, a vector of exposures i.e. E(y) = uexp(xbeta). For binomial, a vector containing the number of trials. Defaults 1. |
summary |
If |
type |
If |
Value
If summary=TRUE
, time series containing summary statistics of predicted values.
Otherwise a matrix of samples from predictive distribution.
Examples
## Not run:
set.seed(1)
n <- 50
x1 <- rnorm(n, 0, 1)
x2 <- rnorm(n, 1, 0.5)
x3 <- rnorm(n)
beta1 <- cumsum(c(1, rnorm(n - 1, sd = 0.1)))
beta2 <- cumsum(c(0, rnorm(n - 1, sd = 0.1)))
beta3 <- -1
u <- sample(1:10, size = n, replace = TRUE)
y <- rbinom(n, u, plogis(beta3 * x3 + beta1 * x1 + beta2 * x2))
d <- data.frame(y, x1, x2, x3)
out <- walker_glm(y ~ x3 + rw1(~ -1 + x1 + x2, beta = c(0, 2),
sigma = c(2, 10)), distribution = "binomial", beta = c(0, 2),
u = u, data = d,
iter = 2000, chains = 1, refresh = 0)
# what if our covariates were constant?
newdata <- data.frame(x1 = rep(0.4, n), x2 = 1, x3 = -0.1)
fitted <- fitted(out)
pred <- predict_counterfactual(out, newdata, type = "mean")
ts.plot(cbind(fitted[, c(1, 3, 5)], pred[, c(1, 3, 5)]),
col = rep(1:2, each = 3), lty = c(1, 2, 2))
## End(Not run)
Print Summary of walker_fit Object
Description
Prints the summary information of time-invariant model parameters. In case of non-Gaussian models, results based on approximate model are returned with a warning.
Usage
## S3 method for class 'walker_fit'
print(x, ...)
Arguments
x |
An output from |
... |
Additional arguments to |
Construct a first-order random walk component
Description
Auxiliary function used inside of the formula of walker
.
Usage
rw1(formula, data, beta, sigma = c(2, 1e-04), gamma = NULL)
Arguments
formula |
Formula for RW1 part of the model. Only right-hand-side is used. |
data |
Optional data.frame. |
beta |
A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for coefficients at time 1. |
sigma |
A vector of length two, defining the Gamma prior for the coefficient level standard deviation. First element corresponds to the shape parameter and second to the rate parameter. Default is Gamma(2, 0.0001). |
gamma |
An optional k times n matrix defining a known non-negative weights of the random walk noises, where k is the number of coefficients and n is the number of time points. Then, the standard deviation of the random walk noise for each coefficient is of form gamma_t * sigma (instead of just sigma). |
Construct a second-order random walk component
Description
Auxiliary function used inside of the formula of walker
.
Usage
rw2(formula, data, beta, sigma = c(2, 1e-04), nu, gamma = NULL)
Arguments
formula |
Formula for RW2 part of the model. Only right-hand-side is used. |
data |
Optional data.frame. |
beta |
A vector of length two which defines the prior mean and standard deviation of the Gaussian prior for coefficients at time 1. |
sigma |
A vector of length two, defining the Gamma prior for the slope level standard deviation. First element corresponds to the shape parameter and second to the rate parameter. Default is Gamma(2, 0.0001). |
nu |
A vector of length two which defines the prior mean and standard deviation of the Gaussian prior for the slopes nu at time 1. |
gamma |
An optional k times n matrix defining a known non-negative weights of the slope noises, where k is the number of coefficients and n is the number of time points. Then, the standard deviation of the noise term for each coefficient's slope is of form gamma_t * sigma (instead of just sigma). |
Summary of walker_fit Object
Description
Return summary information of time-invariant model parameters.
Usage
## S3 method for class 'walker_fit'
summary(object, type = "tiv", ...)
Arguments
object |
An output from |
type |
Either |
... |
Ignored. |
Bayesian regression with random walk coefficients
Description
Function walker
performs Bayesian inference of a linear
regression model with time-varying, random walk regression coefficients,
i.e. ordinary regression model where instead of constant coefficients the
coefficients follow first or second order random walks.
All Markov chain Monte Carlo computations are done using Hamiltonian
Monte Carlo provided by Stan, using a state space representation of the model
in order to marginalise over the coefficients for efficient sampling.
Usage
walker(
formula,
data,
sigma_y_prior = c(2, 0.01),
beta,
init,
chains,
return_x_reg = FALSE,
gamma_y = NULL,
return_data = TRUE,
...
)
Arguments
formula |
An object of class |
data |
An optional data.frame or object coercible to such, as in |
sigma_y_prior |
A vector of length two, defining the a Gamma prior for
the observation level standard deviation with first element corresponding to the shape parameter and
second to rate parameter. Default is Gamma(2, 0.0001). Not used in |
beta |
A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for time-invariant coefficients |
init |
Initial value specification, see |
chains |
Number of Markov chains. Default is 4. |
return_x_reg |
If |
gamma_y |
An optional vector defining known non-negative weights for the standard
deviation of the observational level noise at each time point.
More specifically, the observational level standard deviation sigma_t is
defined as |
return_data |
if |
... |
Further arguments to |
Details
The rw1
and rw2
functions used in the formula define new formulas
for the first and second order random walks. In addition, these functions
need to be supplied with priors for initial coefficients and the
standard deviations. For second order random walk model, these sigma priors
correspond to the standard deviation of slope disturbances. For rw2
,
also a prior for the initial slope nu needs to be defined. See examples.
Value
A list containing the stanfit
object, observations y
,
and covariates xreg
and xreg_new
.
Note
Beware of overfitting and identifiability issues. In particular,
be careful in not defining multiple intercept terms
(only one should be present).
By default rw1
and rw2
calls add their own time-varying
intercepts, so you should use 0
or -1
to remove some of them
(or the time-invariant intercept in the fixed-part of the formula).
See Also
walker_glm()
for non-Gaussian models.
Examples
## Not run:
set.seed(1)
x <- rnorm(10)
y <- x + rnorm(10)
# different intercept definitions:
# both fixed intercept and time-varying level,
# can be unidentifiable without strong priors:
fit1 <- walker(y ~ rw1(~ x, beta = c(0, 1)),
beta = c(0, 1), chains = 1, iter = 1000, init = 0)
# only time-varying level, using 0 or -1 removes intercept:
fit2 <- walker(y ~ 0 + rw1(~ x, beta = c(0, 1)), chains = 1, iter = 1000,
init = 0)
# time-varying level, no covariates:
fit3 <- walker(y ~ 0 + rw1(~ 1, beta = c(0, 1)), chains = 1, iter = 1000)
# fixed intercept no time-varying level:
fit4 <- walker(y ~ rw1(~ 0 + x, beta = c(0, 1)),
beta = c(0, 1), chains = 1, iter = 1000)
# only time-varying effect of x:
fit5 <- walker(y ~ 0 + rw1(~ 0 + x, beta = c(0, 1)), chains = 1, iter = 1000)
## End(Not run)
## Not run:
rw1_fit <- walker(Nile ~ -1 +
rw1(~ 1,
beta = c(1000, 100),
sigma = c(2, 0.001)),
sigma_y_prior = c(2, 0.005),
iter = 2000, chains = 1)
rw2_fit <- walker(Nile ~ -1 +
rw2(~ 1,
beta = c(1000, 100),
sigma = c(2, 0.001),
nu = c(0, 100)),
sigma_y_prior = c(2, 0.005),
iter = 2000, chains = 1)
g_y <- geom_point(data = data.frame(y = Nile, x = time(Nile)),
aes(x, y, alpha = 0.5), inherit.aes = FALSE)
g_rw1 <- plot_coefs(rw1_fit) + g_y
g_rw2 <- plot_coefs(rw2_fit) + g_y
if(require("gridExtra")) {
grid.arrange(g_rw1, g_rw2, ncol=2, top = "RW1 (left) versus RW2 (right)")
} else {
g_rw1
g_rw2
}
y <- window(log10(UKgas), end = time(UKgas)[100])
n <- 100
cos_t <- cos(2 * pi * 1:n / 4)
sin_t <- sin(2 * pi * 1:n / 4)
dat <- data.frame(y, cos_t, sin_t)
fit <- walker(y ~ -1 +
rw1(~ cos_t + sin_t, beta = c(0, 10), sigma = c(2, 1)),
sigma_y_prior = c(2, 10), data = dat, chains = 1, iter = 2000)
print(fit$stanfit, pars = c("sigma_y", "sigma_rw1"))
plot_coefs(fit)
# posterior predictive check:
pp_check(fit)
newdata <- data.frame(
cos_t = cos(2 * pi * 101:108 / 4),
sin_t = sin(2 * pi * 101:108 / 4))
pred <- predict(fit, newdata)
plot_predict(pred)
# example on scalability
set.seed(1)
n <- 2^12
beta1 <- cumsum(c(0.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.15)))
x1 <- rnorm(n, mean = 2)
x2 <- cos(1:n)
rw <- cumsum(rnorm(n, 0, 0.5))
signal <- rw + beta1 * x1 + beta2 * x2
y <- rnorm(n, signal, 0.5)
d <- data.frame(y, x1, x2)
n <- 2^(6:12)
times <- numeric(length(n))
for(i in seq_along(n)) {
times[i] <- sum(get_elapsed_time(
walker(y ~ 0 + rw1(~ x1 + x2,
beta = c(0, 10)),
data = d[1:n[i],],
chains = 1, seed = 1, refresh = 0)$stanfit))
}
plot(log2(n), log2(times))
## End(Not run)
Bayesian generalized linear model with time-varying coefficients
Description
Function walker_glm
is a generalization of walker
for non-Gaussian
models. Compared to walker
, the returned samples are based on Gaussian approximation,
which can then be used for exact-approximate analysis by weighting the sample properly. These weights
are also returned as a part of the stanfit
(they are generated in the
generated quantities block of Stan model). Note that plotting functions pp_check
,
plot_coefs
, and plot_predict
resample the posterior based on weights
before plotting, leading to "exact" analysis.
Usage
walker_glm(
formula,
data,
beta,
init,
chains,
return_x_reg = FALSE,
distribution,
initial_mode = "kfas",
u,
mc_sim = 50,
return_data = TRUE,
...
)
Arguments
formula |
An object of class |
data |
An optional data.frame or object coercible to such, as in |
beta |
A length vector of length two which defines the prior mean and standard deviation of the Gaussian prior for time-invariant coefficients |
init |
Initial value specification, see |
chains |
Number of Markov chains. Default is 4. |
return_x_reg |
If |
distribution |
Either |
initial_mode |
The initial guess of the fitted values on log-scale.
Defines the Gaussian approximation used in the MCMC.
Either |
u |
For Poisson model, a vector of exposures i.e. |
mc_sim |
Number of samples used in importance sampling. Default is 50. |
return_data |
if |
... |
Further arguments to |
Details
The underlying idea of walker_glm
is based on Vihola, Helske, Franks (2020).
walker_glm
uses the global approximation (i.e. start of the MCMC) instead of more accurate
but slower local approximation (where model is approximated at each iteration).
However for these restricted models global approximation should be sufficient,
assuming the the initial estimate of the conditional mode of p(xbeta | y, sigma) not too
far away from the true posterior. Therefore by default walker_glm
first finds the
maximum likelihood estimates of the standard deviation parameters
(using KFAS::KFAS()
) package, and
constructs the approximation at that point, before running the Bayesian
analysis.
Value
A list containing the stanfit
object, observations y
,
covariates xreg_fixed
, and xreg_rw
.
References
Vihola, M, Helske, J, Franks, J. (2020). Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo. Scandinavian Journal of Statistics. 47: 1339–1376. doi:10.1111/sjos.12492
See Also
Package diagis
in CRAN, which provides functions for computing weighted
summary statistics.
Examples
set.seed(1)
n <- 25
x <- rnorm(n, 1, 1)
beta <- cumsum(c(1, rnorm(n - 1, sd = 0.1)))
level <- -1
u <- sample(1:10, size = n, replace = TRUE)
y <- rpois(n, u * exp(level + beta * x))
ts.plot(y)
# note very small number of iterations for the CRAN checks!
out <- walker_glm(y ~ -1 + rw1(~ x, beta = c(0, 10),
sigma = c(2, 10)), distribution = "poisson",
iter = 200, chains = 1, refresh = 0)
print(out$stanfit, pars = "sigma_rw1") ## approximate results
if (require("diagis")) {
weighted_mean(extract(out$stanfit, pars = "sigma_rw1")$sigma_rw1,
extract(out$stanfit, pars = "weights")$weights)
}
plot_coefs(out)
pp_check(out)
## Not run:
data("discoveries", package = "datasets")
out <- walker_glm(discoveries ~ -1 +
rw2(~ 1, beta = c(0, 10), sigma = c(2, 10), nu = c(0, 2)),
distribution = "poisson", iter = 2000, chains = 1, refresh = 0)
plot_fit(out)
# Dummy covariate example
fit <- walker_glm(VanKilled ~ -1 +
rw1(~ law, beta = c(0, 1), sigma = c(2, 10)), dist = "poisson",
data = as.data.frame(Seatbelts), chains = 1, refresh = 0)
# compute effect * law
d <- coef(fit, transform = function(x) {
x[, 2, 1:170] <- 0
x
})
require("ggplot2")
d %>% ggplot(aes(time, mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`), fill = "grey90") +
geom_line() + facet_wrap(~ beta, scales = "free") + theme_bw()
## End(Not run)
Comparison of naive and state space implementation of RW1 regression model
Description
This function is the first iteration of the function walker
,
which supports only time-varying model where all coefficients ~ rw1.
This is kept as part of the package in order to compare "naive" and
state space versions of the model in the vignette,
but there is little reason to use it for other purposes.
Usage
walker_rw1(
formula,
data,
beta,
sigma,
init,
chains,
naive = FALSE,
return_x_reg = FALSE,
...
)
Arguments
formula |
An object of class |
data |
An optional data.frame or object coercible to such, as in |
beta |
A matrix with |
sigma |
A matrix with |
init |
Initial value specification, see |
chains |
Number of Markov chains. Default is 4. |
naive |
Only used for |
return_x_reg |
If |
... |
Additional arguments to |
Examples
## Not run:
## Comparing the approaches, note that with such a small data
## the differences aren't huge, but try same with n = 500 and/or more terms...
set.seed(123)
n <- 100
beta1 <- cumsum(c(0.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.15)))
x1 <- rnorm(n, 1)
x2 <- 0.25 * cos(1:n)
ts.plot(cbind(beta1 * x1, beta2 *x2), col = 1:2)
u <- cumsum(rnorm(n))
y <- rnorm(n, u + beta1 * x1 + beta2 * x2)
ts.plot(y)
lines(u + beta1 * x1 + beta2 * x2, col = 2)
kalman_walker <- walker_rw1(y ~ -1 +
rw1(~ x1 + x2, beta = c(0, 2), sigma = c(0, 2)),
sigma_y = c(0, 2), iter = 2000, chains = 1)
print(kalman_walker$stanfit, pars = c("sigma_y", "sigma_rw1"))
betas <- extract(kalman_walker$stanfit, "beta")[[1]]
ts.plot(cbind(u, beta1, beta2, apply(betas, 2, colMeans)),
col = 1:3, lty = rep(2:1, each = 3))
sum(get_elapsed_time(kalman_walker$stanfit))
naive_walker <- walker_rw1(y ~ x1 + x2, iter = 2000, chains = 1,
beta = cbind(0, rep(2, 3)), sigma = cbind(0, rep(2, 4)),
naive = TRUE)
print(naive_walker$stanfit, pars = c("sigma_y", "sigma_b"))
sum(get_elapsed_time(naive_walker$stanfit))
## Larger problem, this takes some time with naive approach
set.seed(123)
n <- 500
beta1 <- cumsum(c(1.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.5)))
beta3 <- cumsum(c(-1.5, rnorm(n - 1, 0, sd = 0.15)))
beta4 <- 2
x1 <- rnorm(n, 1)
x2 <- 0.25 * cos(1:n)
x3 <- runif(n, 1, 3)
ts.plot(cbind(beta1 * x1, beta2 * x2, beta3 * x3), col = 1:3)
a <- cumsum(rnorm(n))
signal <- a + beta1 * x1 + beta2 * x2 + beta3 * x3
y <- rnorm(n, signal)
ts.plot(y)
lines(signal, col = 2)
kalman_walker <- walker_rw1(y ~ x1 + x2 + x3, iter = 2000, chains = 1,
beta = cbind(0, rep(2, 4)), sigma = cbind(0, rep(2, 5)))
print(kalman_walker$stanfit, pars = c("sigma_y", "sigma_b"))
betas <- extract(kalman_walker$stanfit, "beta")[[1]]
ts.plot(cbind(u, beta1, beta2, beta3, apply(betas, 2, colMeans)),
col = 1:4, lty = rep(2:1, each = 4))
sum(get_elapsed_time(kalman_walker$stanfit))
# need to increase adapt_delta in order to get rid of divergences
# and max_treedepth to get rid of related warnings
# and still we end up with low BFMI warning after hours of computation
naive_walker <- walker_rw1(y ~ x1 + x2 + x3, iter = 2000, chains = 1,
beta = cbind(0, rep(2, 4)), sigma = cbind(0, rep(2, 5)),
naive = TRUE, control = list(adapt_delta = 0.9, max_treedepth = 15))
print(naive_walker$stanfit, pars = c("sigma_y", "sigma_b"))
sum(get_elapsed_time(naive_walker$stanfit))
## End(Not run)