The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of waspr is to compute Wasserstein barycenters of subset posteriors.
The R-package waspr can be installed from CRAN as follows:
install.packages("waspr")
You can install a beta-version of waspr from github with:
install.packages("devtools")
::install_github("joliencremers/waspr") devtools
To cite the package ‘waspr’ in publications use:
Jolien Cremers (2020). waspr: Wasserstein Barycenters of Subset Posteriors. R package version 1.0.1. https://CRAN.R-project.org/package=waspr
or
Jolien Cremers (2020). waspr: Wasserstein Barycenters of Subset Posteriors. Zenodo, doi: 10.5281/zenodo.3971910
This is a basic example which shows you how to compute the Wasserstein barycenter from a set of MCMC outputs for several data subsets. A more extensive explanation of the usage of the package can be found in the Tutorial vignette.
library(waspr)
#>
#> Attaching package: 'waspr'
#> The following object is masked from 'package:base':
#>
#> summary
wasp(pois_logistic,
par.names = c("beta_s", "alpha_l", "beta_l",
"baseline_sigma", "baseline_mu",
"correlation", "sigma_s", "sigma_l"))
#>
#>
#> WASP
#>
#> Call:
#> wasp(mcmc = pois_logistic, par.names = c("beta_s", "alpha_l",
#> "beta_l", "baseline_sigma", "baseline_mu", "correlation",
#> "sigma_s", "sigma_l"))
#>
#> Swapping algorithm:
#> iter = 10
#> acc = 0.001
#>
#> MCMC:
#> subsets = 8
#> parameters = 8
#> samples = 450
#>
#> Posterior summary of the Wasserstein Barycenter:
#> mean mode sd LB HPD UB HPD
#> beta_s 0.5527601 0.5518034 0.10988949 0.36598187 0.7896041
#> alpha_l 2.6811079 2.6959176 0.19199304 2.30380675 3.0295802
#> beta_l 0.7508520 0.7339988 0.21631011 0.37281283 1.1740767
#> baseline_sigma 0.3563222 0.3811609 0.06859910 0.21910807 0.4870079
#> baseline_mu -0.8008872 -0.7516167 0.10867533 -1.01168299 -0.5944583
#> correlation 0.1732170 0.1392670 0.07437737 0.02824474 0.3059979
#> sigma_s 1.7225455 1.7535499 0.17920847 1.40126462 2.0610585
#> sigma_l 1.2190297 1.2612822 0.07558163 1.06768047 1.3569757
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.