The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
A weather generator is a numerical tool that resamples a daily time series of precipitation, temperature, and season many times, while preserving observed or projected characteristics of importance, such as the statistics of the transition between wet and dry days. The resulting large group, or ensemble, of likely rainfall and temperature time series represents a range of possible amounts, daily patterns, and seasonality. This weather generator is, to our knowledge, novel in that it includes seasons (up to 26) in training the simulation algorithm.
The goal of wxgenR
is to provide users a tool that can
simulate, with fidelity, an ensemble of precipitation and temperature
based on training data that could include, for example, station based
point measurements, grid cell values derived from models or remotely
sensed data, or basin averages. The incorporation of seasonality as a
covariate in the training algorithm allows users to examine the effects
of shifts in seasonality due to climate warming (e.g., earlier snowmelt
seasons or prolonged summer dry periods). wxgenR
is an
effective and robust scenario planning tool for a wide variety of
potential futures.
wxgenR
All that is needed to run wxgenR
is a single time series
of precipitation, temperature, and season. Up to 20 seasons may be
defined, but most users will likely only need two to four based on their
study region. For example, wxgenR
is provided with
basin-average data from the Lower Santa Cruz River Basin (LSCRB) in
Arizona, a monsoon dominated region with three distinct seasons. Within
the data used to train the weather generator, these three seasons should
be noted with an index of either 1, 2, or 3 for each day in the time
series. The varying statistics of each season will impact the resulting
simulations.
For example, using the Lower Santa Cruz River basin-average precipitation, temperature, and season from 1970 to 1999, we can generate simulated precipitation and temperature for any desired time length and ensemble size. Your variables must be named as the following: ‘year’, ‘month’, ‘day’, ‘prcp’, ‘temp’, ‘season’, whether they are input as a dataframe or a text file. All input variables must be contained within the same dataframe or text file. If inputting a text file, it must be comma separated (.csv). The weather generator can handle NA values for precipitation or temperature, but all other variables should be numeric values.
library(wxgenR)
library(lubridate)
library(dplyr)
library(tidyr)
library(reshape2)
library(ggpubr)
library(data.table)
library(moments)
library(seas)
data(LowerSantaCruzRiverBasinAZ)
head(LowerSantaCruzRiverBasinAZ)
#> year month day prcp temp season
#> 1 1970 1 1 0.023414149 51.40506 3
#> 2 1970 1 2 0.013410175 49.80209 3
#> 3 1970 1 3 0.000000000 45.32600 3
#> 4 1970 1 4 0.000000000 45.45297 3
#> 5 1970 1 5 0.000000000 47.17262 3
#> 6 1970 1 6 0.001264031 49.20631 3
Use the variables within the wx() function like syr
and
eyr
(start and end year) to set the temporal boundaries
from which to sample, otherwise, if left empty the start and end years
will default to the beginning and end of your training data. Use
nsim
to set the length (in years) of your simulated
weather, and nrealz
to set the ensemble size (number of
traces).
The variable wwidth
will set the sampling window for
each day of year (Jan. 1 through Dec. 31) for every year in the
simulation. The sampling window for each day of year is +/-
wwidth
+ 1, effectively sampling wwidth
number
of days before and after each day of year, including that day of year. A
lower value for wwidth
will sample fewer surrounding days
and a higher value will sample more days, resulting in dampened and
heightened variability, respectively. Typical setting of
wwidth
is between 1 and 15, resulting in a daily sampling
window of 3 days and 31 days, respectively. Generally, higher and lower
values of wwidth
result in higher and lower variance,
respectively, in the simulated data.
For example, to simulate precipitation on day 1 of the simulation
(Jan. 1 of year 1), with wwidth
= 1 (a 3-day window), the
algorithm will sample days in the training record between (and
including) December 31 and January 2 (for all years in the training
record). For day 2 of the simulation (Jan. 2 of year 1), the algorithm
will sample days in the training record between January 1 and January 3.
Simulation day 3 (Jan. 3) will sample between January 2 and January 4,
and so on. Increasing wwidth
to 2 (a 5-day window) will
sample between December 30 and January 3 for Jan. 1 simulations,
December 31 to January 4 for Jan. 2, and January 1 to January 5 for
Jan. 3, and so on.
In some cases, the wwidth
will be automatically
increased through an adaptive window width if precipitation occurred on
a given day but there were less than two daily precipitation values over
0.01 inches during the window for that day. wwidth
will
adaptively increase by 1 until two or more daily precipitation values
over 0.01 inches are in each window. Adaptive window width is most
likely to occur in regions with high aridity, dry seasons, a small
initial value of wwidth
is used, or if the number of years
in the training data is relatively short (e.g., less than 30 years). To
display the results of the adaptive window width, set
awinFlag = T
.
Here, our training data spans 1970-01-01 to 1999-12-31, but we don’t
want to use the full historical record, so we set syr
and
eyr
to 1970 and 1974, respectively, in the
wx()
function so that the training data is subset between
those years. We want a simulation length of 5-years (nsim
)
in order to match the length of the subset training record and 2 traces
in our ensemble (nrealz
) for computational efficiency
(although more traces, e.g. 50, are recommended). Sampling for each day
of the year will sample from the preceding 3-days, the day of, and the
following 3-days (wwidth
) for a total window size of
7-days.
We may also want to increase the variability of our simulated
precipitation by sampling outside the historical envelope with an
Epanechnikov Kernel (ekflag = T
). For more details on the
Epanechnikov kernel and its use in a weather generator, see Rajagopalan
et al. (1996). Setting tempPerturb = T
will increase the
variability of the simulated temperature by adding random noise from a
normal distribution fit using a mean of zero and a standard deviation
equal to the monthly standard deviation of simulated temperature
residuals. Given that simulated daily temperature at time t is a
function of temperature(t-1), cosine(t), sine(t), precipitation
occurrence(t), and monthly mean temperature(t), the standard deviation
of daily residuals from this model is calculated for each month and used
to add random noise to the simulated temperature. The temperature
simulation approach is inspired by- and adapted from- Verdin et
al. (2015, 2018).
Since the training data has units of inches and degrees Fahrenheit
for precipitation and temperature, respectively, we must set
unitSystem = "U.S. Customary"
. Setting
numbCores
to 2 or greater will enable parallel computing
for precipitation simulation which is the most computationally intensive
aspect of the weather generator.
= 5 #number of simulation years
nsim = 2 #number of traces in ensemble
nrealz
<- Sys.time() #benchmark run time
startTime
= wx(trainingData = LowerSantaCruzRiverBasinAZ,
z syr = 1970, eyr = 1974, smo = 10, emo = 9,
nsim = nsim, nrealz = nrealz, aseed = 123,
wwidth = c(7,1,3), unitSystem = "U.S. Customary", ekflag = TRUE,
awinFlag = T, tempPerturb = TRUE, pcpOccFlag = FALSE,
numbCores = 2)
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
= Sys.time() endTime
The wx() function will return a list containing both your
input/training data, and a variety of processed outputs, named here as
the variable z
. Within z
, dat.d
is the original input data as well as some intermediary variables.
simyr1
contains the years within your training data that
were sampled to generate simulated values for each trace. X
is the occurrence of daily precipitation for each trace, where 1 and 0
indicate the presence and absence of precipitation, respectively.
Xseas
is the season index for each day and trace.
Xpdate
shows which days from the training data were sampled
for each simulated day and trace, if precipitation was simulated to
occur on a given day. Xpamt
is the simulated precipitation
amount for each day and trace. Xtemp
is the simulated
temperature for each day and trace.
Generally, Xpamt
and Xtemp
will be of most
interest to users as these are the desired outputs of simulated daily
precipitation and temperature.
glimpse(z)
#> List of 7
#> $ dat.d :'data.frame': 1461 obs. of 16 variables:
#> ..$ year : int [1:1461] 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 ...
#> ..$ month : int [1:1461] 10 10 10 10 10 10 10 10 10 10 ...
#> ..$ day : int [1:1461] 1 2 3 4 5 6 7 8 9 10 ...
#> ..$ prcp : num [1:1461] 0.000747 0 0 0 0.018086 ...
#> ..$ temp : num [1:1461] 73.7 70.8 72.4 71.9 72.6 ...
#> ..$ season: int [1:1461] 3 3 3 3 3 3 3 3 3 3 ...
#> ..$ date1 : num [1:1461] 19701001 19701002 19701003 19701004 19701005 ...
#> ..$ week : num [1:1461] 40 40 40 40 40 40 40 41 41 41 ...
#> ..$ date : Date[1:1461], format: "1970-10-01" "1970-10-02" ...
#> ..$ states: int [1:1461] 3 3 3 3 3 3 3 3 3 3 ...
#> ..$ jday : num [1:1461] 1 2 3 4 5 6 7 8 9 10 ...
#> ..$ tday : num [1:1461] 365 365 365 365 365 365 365 365 365 365 ...
#> ..$ tavgm : num [1:1461] 68.8 68.8 68.8 68.8 68.8 ...
#> ..$ oc : num [1:1461] 0 0 0 0 1 0 0 0 1 0 ...
#> ..$ ct : num [1:1461] 1 0.999 0.999 0.998 0.996 ...
#> ..$ st : num [1:1461] 0.0172 0.0344 0.0516 0.0688 0.086 ...
#> $ simyr1: int [1:5, 1:2] 1973 1972 1971 1973 1973 1971 1972 1972 1973 1971
#> $ X : num [1:1830, 1:2] 0 0 1 1 1 1 0 1 1 1 ...
#> $ Xseas : int [1:1830, 1:2] 3 3 3 3 3 3 3 3 3 3 ...
#> $ Xpdate:'data.frame': 1830 obs. of 2 variables:
#> ..$ V1: num [1:1830] NA NA 19731005 19731007 19701005 ...
#> ..$ V2: num [1:1830] NA 19701005 19731001 19731007 19731005 ...
#> $ Xpamt :'data.frame': 1830 obs. of 2 variables:
#> ..$ V1: num [1:1830] 0 0 0.0634 0.0514 0.0184 ...
#> ..$ V2: num [1:1830] 0 0.0274 0.3136 0.0342 0.0584 ...
#> $ Xtemp : num [1:1830, 1:2] 65.7 65.2 60.1 61.9 62.5 ...
#parse variables from wx() output
= z$dat.d
dat.d = z$simyr1
simyr1 = z$X
X = z$Xseas
Xseas = z$Xpdate
Xpdate = z$Xpamt
Xpamt = z$Xtemp
Xtemp
#write simulation output
#
<- seq(1, length(X[,1]), 366)
it1 = it1+366-1
it2
#initialize storage
= matrix(NA, nrow = nsim*366, ncol = nrealz+3)
sim.pcp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
sim.tmp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
sim.szn
#loop through realization
= 1
irealz for (irealz in 1:nrealz){
<- vector()
outmat
#loop through simulation years
= 1
isim for (isim in 1:nsim){
= FALSE
leapflag = simyr1[isim, irealz]
ayr if (lubridate::leap_year(ayr)) leapflag = TRUE
= rep(isim, 366) #column 1, simulation year
col1 = ayr*10^4+01*10^2+01; d2 = ayr*10^4+12*10^2+31
d1 = which(dat.d$date1 == d1)
i1 = which(dat.d$date1 == d2)
i2 = dat.d$date1[i1:i2] #column 2, simulation date
col2 if (leapflag == FALSE) col2 = c(col2,NA)
= it1[isim]
i1 = it2[isim]
i2 = Xseas[i1:i2, irealz] #column 3, simulation season
col3 = X[i1:i2, irealz] #column 4, precipitation occurrence
col4 = Xpdate[i1:i2, irealz] #column 5, precipation resampling date
col5 = Xpamt[i1:i2, irealz] #column 6, resampled precipitation amount
col6 = Xtemp[i1:i2, irealz] #column7, simulated temperature
col7
#create time series of 'simulation day'
= rep(isim, length(col2))
sim.yr = month(ymd(col2))
sim.month = day(ymd(col2))
sim.day
= rbind(outmat, cbind(sim.yr, sim.month, sim.day, col6, col7, col3))
outmat #isim
}
colnames(outmat) = c("simulation year", "month", "day", "prcp", "temp", "season")
if(irealz == 1){
1:3] = outmat[,1:3]
sim.pcp[,1:3] = outmat[,1:3]
sim.tmp[,1:3] = outmat[,1:3]
sim.szn[,
}
+3] = outmat[,4]
sim.pcp[,irealz+3] = outmat[,5]
sim.tmp[,irealz+3] = outmat[,6]
sim.szn[,irealz
#irealz }
#Format dataframes for simulated precip, temperature, and season
# df = sim.pcp
= function(df){
formatting
= as.data.frame(df)
df
colnames(df) = c("simulation year", "month", "day", paste0("Trace_", 1:nrealz))
#remove 366 days for non-leap years
= drop_na(df, c(month, day))
df
#assign simulation year to start at the same time as training data
$`simulation year` = df$`simulation year` + dat.d$year[1] - 1
df
#format date
$Date = ymd(paste(df$`simulation year`, df$month, df$day, sep = "-"))
df
#remove years that aren't leap years
# df = drop_na(df, Date)
= df %>%
df mutate(yday = as.numeric(yday(Date)),
week = as.numeric(week(Date))) %>%
relocate(c(Date,yday,week), .after = day) %>%
melt(id = 1:6)
return(df)
}
= formatting(sim.pcp)
sim.pcp #> Warning: 1 failed to parse.
#> Warning in melt(., id = 1:6): The melt generic in data.table has been passed a
#> data.frame and will attempt to redirect to the relevant reshape2 method; please
#> note that reshape2 is deprecated, and this redirection is now deprecated as
#> well. To continue using melt methods from reshape2 while both libraries are
#> attached, e.g. melt.list, you can prepend the namespace like reshape2::melt(.).
#> In the next version, this warning will become an error.
= formatting(sim.tmp)
sim.tmp #> Warning: 1 failed to parse.
#> Warning: The melt generic in data.table has been passed a data.frame and will
#> attempt to redirect to the relevant reshape2 method; please note that reshape2
#> is deprecated, and this redirection is now deprecated as well. To continue using
#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,
#> you can prepend the namespace like reshape2::melt(.). In the next version, this
#> warning will become an error.
= formatting(sim.szn)
sim.szn #> Warning: 1 failed to parse.
#> Warning: The melt generic in data.table has been passed a data.frame and will
#> attempt to redirect to the relevant reshape2 method; please note that reshape2
#> is deprecated, and this redirection is now deprecated as well. To continue using
#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,
#> you can prepend the namespace like reshape2::melt(.). In the next version, this
#> warning will become an error.
colnames(dat.d)[11] = "yday"
= dat.d[,c(1:3,8:9,11,4)]
obs.pcp = dat.d[,c(1:3,8:9,11,5)] obs.tmp
If your data contained NA values, they can propagate to simulated
temperature values (NA precip values in your data are set to 0), so use
na.rm = T
for any subsequent analysis. You may also choose
to replace NA
values with daily or monthly averages.
Additionally, leap years may be included in the simulated weather if
they are included in your training data, so all non-leap years include a
row of ‘NA’ values at the end of the calendar year as a book-keeping
measure so that the total number of rows in each trace is the same.
#plot simulated daily data
# simDat = sim.tmp
# obsDat = obs.tmp
# Tag = "Temp"
= function(simDat, obsDat, Tag){
dailyPlot
= simDat %>%
simD drop_na() %>%
group_by(variable, yday) %>%
summarise(
mean = mean(value, na.rm = T),
max = max(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
%>%
) ungroup()
<- simD %>%
simDq group_by(yday) %>%
summarise(
mean_q5 = quantile(mean, 0.05, na.rm = T),
mean_med = median(mean, na.rm = T),
mean_q95 = quantile(mean, 0.95, na.rm =T),
max_q5 = quantile(max, 0.05, na.rm = T),
max_med = median(max, na.rm = T),
max_q95 = quantile(max, 0.95, na.rm = T),
sd_q5 = quantile(sd, 0.05, na.rm = T),
sd_med = median(sd),
sd_q95 = quantile(sd, 0.95, na.rm = T),
skew_q5 = quantile(skew, 0.05, na.rm = T),
skew_med = median(skew, na.rm = T),
skew_q95 = quantile(skew, 0.95, na.rm = T)
%>%
) drop_na() %>%
ungroup()
if(Tag == "Temp"){
<- obsDat %>%
obs drop_na() %>%
group_by(yday) %>%
summarise(
mean = mean(temp, na.rm = T),
max = max(temp, na.rm = T),
sd = sd(temp, na.rm = T),
skew = skewness(temp, na.rm = T)
%>%
) ungroup()
else if(Tag == "Precip"){
} <- obsDat %>%
obs drop_na() %>%
group_by(yday) %>%
summarise(
mean = mean(prcp, na.rm = T),
max = max(prcp, na.rm = T),
sd = sd(prcp, na.rm = T),
skew = skewness(prcp, na.rm = T)
%>%
) ungroup()
}
colnames(obs)[-1] = paste0("obs_", colnames(obs)[-1])
= left_join(simDq, obs, by = "yday")
df.comb
#plotting --------------------------------
= c(0.8, 0.9)
lgdLoc
if(Tag == "Temp"){
= "Daily Temperature "
yLabel = "(°F)"
units else if(Tag == "Precip"){
} = "Daily Precipitation "
yLabel = "(inches)"
units
}
= 0.65
trnAlpha
#daily mean
= ggplot(df.comb) +
p1 geom_ribbon(aes(x = yday, ymin = mean_q5, ymax = mean_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = mean_med, color = "red"), size = 1, alpha = 0.8) +
geom_line(aes(x = yday, y = obs_mean), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_mean), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Training Data','Simulation Median', '95% Confidence')) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Mean ", yLabel, units))
#daily SD
= ggplot(df.comb) +
p2 geom_ribbon(aes(x = yday, ymin = sd_q5, ymax = sd_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = sd_med, color = "red"), size = 1, alpha = 0.8) +
geom_line(aes(x = yday, y = obs_sd), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_sd), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Training Data','Simulation Median', '95% Confidence')) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Std. Deviation of ", yLabel, units))
#daily skew
= ggplot(df.comb) +
p3 geom_ribbon(aes(x = yday, ymin = skew_q5, ymax = skew_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = skew_med, color = "red"), size = 1, alpha = 0.8) +
geom_line(aes(x = yday, y = obs_skew), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_skew), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Training Data','Simulation Median', '95% Confidence')) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Skew of ", yLabel, " (-)"))
#daily Max
= ggplot(df.comb) +
p4 geom_ribbon(aes(x = yday, ymin = max_q5, ymax = max_q95), alpha = 0.25) +
geom_line(aes(x = yday, y = max_med, color = "red"), size = 1, alpha = 0.8) +
geom_line(aes(x = yday, y = obs_max), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
geom_point(aes(x = yday, y = obs_max), size = 0.6, alpha = trnAlpha, color = "blue") +
scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Training Data','Simulation Median', '95% Confidence')) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
# text=element_text(size=14),
panel.grid.major = element_line(),
legend.title=element_blank(),
legend.position = lgdLoc,
legend.background = element_blank(),
legend.box.background = element_blank(),
legend.key = element_blank()) +
xlab("Day of Year") + ylab(paste0("Maximum ", yLabel, units))
= ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "bottom")
p.comb
print(p.comb)
# p.out = paste0(tempdir(), "/outputPlots/dailyStats_", Tag, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png")
}
dailyPlot(sim.pcp, obs.pcp, "Precip")
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> Warning: Removed 1 row(s) containing missing values (geom_path).
#> Warning: Removed 74 rows containing missing values (geom_point).
dailyPlot(sim.tmp, obs.tmp, "Temp")
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
Boxplot whiskers are in the style of Tukey (1.5 x interquartile range)
#plot simulated daily data
# simDat = sim.tmp
# obsDat = obs.tmp
# Tag = "Temp"
= function(simDat, obsDat, Tag){
monthlyPlot
if(Tag == "Temp"){
= simDat %>%
simM drop_na() %>%
group_by(variable, month, `simulation year`) %>%
summarise(
mean = mean(value, na.rm = T),
max = max(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
%>%
) ungroup()
<- simM %>%
simMM group_by(variable, month) %>%
summarise(
mean=mean(mean),
max=mean(max),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm=T)
%>%
) ungroup()
<- obsDat %>%
obs drop_na() %>%
group_by(month, year) %>%
summarise(
mean = mean(temp, na.rm = T),
max = max(temp, na.rm = T),
sd = sd(temp, na.rm = T),
skew = skewness(temp, na.rm = T)
%>%
) ungroup()
<- obs %>%
obsMM group_by(month) %>%
summarise(
mean = mean(mean, na.rm = T),
max = mean(max, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm=T)
%>%
) mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
else if(Tag == "Precip"){
}
= simDat %>%
simM drop_na() %>%
group_by(variable, month, `simulation year`) %>%
summarise(
sum = sum(value, na.rm = T),
max = max(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
%>%
) ungroup()
<- simM %>%
simMM group_by(variable, month) %>%
summarise(
sum=mean(sum),
max=mean(max),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm=T)
%>%
) ungroup()
<- obsDat %>%
obs drop_na() %>%
group_by(month, year) %>%
summarise(
sum = sum(prcp, na.rm = T),
max = max(prcp, na.rm = T),
sd = sd(prcp, na.rm = T),
skew = skewness(prcp, na.rm = T)
%>%
) ungroup()
<- obs %>%
obsMM group_by(month) %>%
summarise(
sum = mean(sum, na.rm = T),
max = mean(max, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm=T)
%>%
) mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
}
= rbind(obsMM, simMM)
df.comb
#plotting --------------------------------
if(Tag == "Temp"){
= ggplot(df.comb) +
p1 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = mean, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = month, y = mean, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = month, y = mean, color = "Observed")) +
xlab("Month") + ylab("Temperature (°F)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = 1:12) +
ggtitle("Average Mean Monthly Temperature")
else if(Tag == "Precip"){
}
= ggplot(df.comb) +
p1 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sum, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = month, y = sum, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = month, y = sum, color = "Observed")) +
xlab("Month") + ylab("Precipitation (inches)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = 1:12) +
ggtitle("Average Total Monthly Precipitation")
}
if(Tag == "Temp"){
= "Temperature "
yLabel = "(°F)"
units else if(Tag == "Precip"){
} = "Precipitation "
yLabel = "(inches)"
units
}
#monthly SD
= ggplot(df.comb) +
p2 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sd, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = month, y = sd, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = month, y = sd, color = "Observed")) +
xlab("Month") + ylab(paste0("Standard Deviation ", units)) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Standard Deviation in Monthly ", yLabel))
#monthly Skew
= ggplot(df.comb) +
p3 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = skew, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = month, y = skew, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = month, y = skew, color = "Observed")) +
xlab("Month") + ylab("Skew (-)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Skew in Monthly ", yLabel))
#monthly max
= ggplot(df.comb) +
p4 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = max, group = month)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = month, y = max, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = month, y = max, color = "Observed")) +
xlab("Month") + ylab(paste0("Maximum ", units)) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = 1:12) +
ggtitle(paste0("Average Monthly Maximum ", yLabel))
= ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "bottom")
p.comb
print(p.comb)
# p.out = paste0(tempdir(), "/outputPlots/monthlyStats_", Tag, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png", height = 8, width = 8, units = "in")
}
monthlyPlot(sim.pcp, obs.pcp, "Precip")
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
monthlyPlot(sim.tmp, obs.tmp, "Temp")
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
Boxplot whiskers are in the style of Tukey (1.5 x interquartile range)
#plot simulated daily data
= sim.tmp
simDat = obs.tmp
obsDat = "Temp"
Tag
= function(simDat, obsDat, Tag){
weeklyPlot
if(Tag == "Temp"){
= simDat %>%
simW drop_na() %>%
group_by(variable, week, `simulation year`) %>%
summarise(
mean = mean(value, na.rm = T),
max = max(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
%>%
) ungroup()
<- simW %>%
simWW group_by(variable, week) %>%
summarise(
mean=mean(mean),
max=mean(max),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm=T)
%>%
) ungroup()
<- obsDat %>%
obs drop_na() %>%
group_by(week, year) %>%
summarise(
mean = mean(temp, na.rm = T),
max = max(temp, na.rm = T),
sd = sd(temp, na.rm = T),
skew = skewness(temp, na.rm = T)
%>%
) ungroup()
<- obs %>%
obsWW group_by(week) %>%
summarise(
mean = mean(mean, na.rm = T),
max = mean(max, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm=T)
%>%
) mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
else if(Tag == "Precip"){
}
= simDat %>%
simW drop_na() %>%
group_by(variable, week, `simulation year`) %>%
summarise(
sum = sum(value, na.rm = T),
max = max(value, na.rm = T),
sd = sd(value, na.rm = T),
skew = skewness(value, na.rm = T)
%>%
) ungroup()
<- simW %>%
simWW group_by(variable, week) %>%
summarise(
sum=mean(sum),
max=mean(max),
sd=sqrt(mean(sd^2)),
skew=mean(skew, na.rm=T)
%>%
) ungroup()
<- obsDat %>%
obs drop_na() %>%
group_by(week, year) %>%
summarise(
sum = sum(prcp, na.rm = T),
max = max(prcp, na.rm = T),
sd = sd(prcp, na.rm = T),
skew = skewness(prcp, na.rm = T)
%>%
) ungroup()
<- obs %>%
obsWW group_by(week) %>%
summarise(
sum = mean(sum, na.rm = T),
max = mean(max, na.rm = T),
sd = sqrt(mean(sd^2)),
skew = mean(skew, na.rm=T)
%>%
) mutate(variable = "Observed") %>%
relocate(variable) %>%
ungroup()
# colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
}
= rbind(obsWW, simWW)
df.comb
#plotting --------------------------------
if(Tag == "Temp"){
= ggplot(df.comb) +
p1 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = week, y = mean, group = week)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = week, y = mean, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = week, y = mean, color = "Observed")) +
xlab("Week") + ylab("Temperature (°F)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = seq(1,52,2)) +
ggtitle("Average Mean Weekly Temperature")
else if(Tag == "Precip"){
}
= ggplot(df.comb) +
p1 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = week, y = sum, group = week)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = week, y = sum, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = week, y = sum, color = "Observed")) +
xlab("Week") + ylab("Precipitation (inches)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = seq(1,52,2)) +
ggtitle("Average Total Weekly Precipitation")
}
if(Tag == "Temp"){
= "Temperature "
yLabel = "(°F)"
units else if(Tag == "Precip"){
} = "Precipitation "
yLabel = "(inches)"
units
}
#weekly SD
= ggplot(df.comb) +
p2 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = week, y = sd, group = week)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = week, y = sd, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = week, y = sd, color = "Observed")) +
xlab("Week") + ylab(paste0("Standard Deviation ", units)) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = seq(1,52,2)) +
ggtitle(paste0("Average Standard Deviation in Weekly ", yLabel))
#weekly Skew
= ggplot(df.comb) +
p3 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = week, y = skew, group = week)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = week, y = skew, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = week, y = skew, color = "Observed")) +
xlab("Week") + ylab("Skew (-)") +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = seq(1,52,2)) +
ggtitle(paste0("Average Skew in Weekly ", yLabel))
#weekly max
= ggplot(df.comb) +
p4 geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = week, y = max, group = week)) +
geom_line(data = subset(df.comb, variable == "Observed"), size = 0.5, aes(x = week, y = max, color = "Observed")) +
geom_point(data = subset(df.comb, variable == "Observed"), size = 1.5, aes(x = week, y = max, color = "Observed")) +
xlab("Week") + ylab(paste0("Maximum ", units)) +
theme_classic() +
theme(axis.title = element_text(face = "bold"),
text=element_text(size=12),
panel.grid.major = element_line(),
legend.title=element_blank(),
plot.title = element_text(size=10)
+
) scale_x_continuous(breaks = seq(1,52,2)) +
ggtitle(paste0("Average Weekly Maximum ", yLabel))
= ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "bottom")
p.comb
print(p.comb)
# p.out = paste0(tempdir(), "/outputPlots/weeklyStats_", Tag, ".png")
# ggsave(filename = p.out, plot = p.comb, device = "png", height = 8, width = 10, units = "in")
}
weeklyPlot(sim.pcp, obs.pcp, "Precip")
#> `summarise()` has grouped output by 'variable', 'week'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'week'. You can override using the
#> `.groups` argument.
#> Warning: Removed 2 rows containing missing values (geom_point).
weeklyPlot(sim.tmp, obs.tmp, "Temp")
#> `summarise()` has grouped output by 'variable', 'week'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'week'. You can override using the
#> `.groups` argument.
Here, lower and upper boxplot whiskers are 5th and 95th percentiles, respectively.
# dat.d = z$dat.d
# X = z$Xpamt
# syr = head(dat.d$year, 1)
# eyr = tail(dat.d$year, 1)
# wLO=0.05; wHI=0.95 #Set whisker percentile for boxplots
<- function(dat.d,X,syr,eyr,nrealz,nsim,wLO,wHI){
spellstats #get these variables after running the driver_wx#.R code
#dat.d <- z$dat.d
#X <- z$X
=syr:eyr
uyr=length(uyr)
nyr
#Training Data
=LowerSantaCruzRiverBasinAZ %>%
Tdatmutate(occ = if_else(prcp>=0.01, 1, 0))
#### END DATA PREPARATION BLOCK TO RUN STATS CODE BELOW ####
#to get month sequence
=length(unique(Tdat$year))
nobs=dat.d$year[min(which(lubridate::leap_year(dat.d$year)))]
lpyear<- ymd(paste(lpyear,1,1,sep="-")) #jan 1 of a leap year to have a 366-day year
aday =which(dat.d$date==aday)
it1=it1+366-1
it2<- dat.d$month[it1:it2]
jdaymth <- rep(jdaymth,nsim)
zz <- rep(1:nsim,each=366)
yy <- cbind(yy,zz,X)
X1
#get spell length stats 3 statistics - mean, var and max
<- array(NA,dim=c(nrealz,3,2,nsim,12)) #save dry and wet spell lengths by sim yr
Y <- array(NA,dim=c(3,2,nobs,12)) #save dry and wet spell lengths by obs yr
W <- array(NA,dim=c(3,2,nrealz,12)) #save average spell length by realz
Z <- array(NA,dim=c(3,2,12)) #save average spell length for obs
V
=seq(1,dim(X1)[1],by=366)
fidx
for (irealz in 1:nrealz){
for (isim in 1:nsim){
=fidx[isim]
i1=i1+366-1
i2for (imth in 1:12){
=i1 + which(X1[i1:i2,2]==imth) - 1
idxlist<- na.omit(X[idxlist,irealz])
s <- spellLengths(s)
z.f if (length(z.f$`0`)>0){
1,1,isim,imth]=mean(z.f$`0`)
Y[irealz,2,1,isim,imth]=var(z.f$`0`)
Y[irealz,3,1,isim,imth]=max(z.f$`0`)
Y[irealz,
}if (length(z.f$`1`)>0){
1,2,isim,imth]=mean(z.f$`1`)
Y[irealz,2,2,isim,imth]=var(z.f$`1`)
Y[irealz,3,2,isim,imth]=max(z.f$`1`)
Y[irealz,
}#imth
} #isim
}#irealz
}
for (isim in 1:nobs){
for (imth in 1:12){
<- dplyr::filter(Tdat, year==unique(Tdat$year)[isim], month==imth)$occ
s <- spellLengths(s)
z.f if (length(z.f$`0`)>0){
1,1,isim,imth]=mean(z.f$`0`)
W[2,1,isim,imth]=var(z.f$`0`)
W[3,1,isim,imth]=max(z.f$`0`)
W[
}if (length(z.f$`1`)>0){
1,2,isim,imth]=mean(z.f$`1`)
W[2,2,isim,imth]=var(z.f$`1`)
W[3,2,isim,imth]=max(z.f$`1`)
W[
}#imth
} #isim
}
for (imth in 1:12){
1,1,,imth]=apply(Y[,1,1,,imth],1,"mean",na.rm=T)
Z[2,1,,imth]=apply(Y[,2,1,,imth],1,"mean",na.rm=T)
Z[3,1,,imth]=apply(Y[,3,1,,imth],1,"mean",na.rm=T)
Z[1,2,,imth]=apply(Y[,1,2,,imth],1,"mean",na.rm=T)
Z[2,2,,imth]=apply(Y[,2,2,,imth],1,"mean",na.rm=T)
Z[3,2,,imth]=apply(Y[,3,2,,imth],1,"mean",na.rm=T)
Z[1,1,imth]=mean(W[1,1,,imth],na.rm=T)
V[2,1,imth]=mean(W[2,1,,imth],na.rm=T)
V[3,1,imth]=mean(W[3,1,,imth],na.rm=T)
V[1,2,imth]=mean(W[1,2,,imth],na.rm=T)
V[2,2,imth]=mean(W[2,2,,imth],na.rm=T)
V[3,2,imth]=mean(W[3,2,,imth],na.rm=T)
V[#imth
}
#Boxplots
<- as.data.frame(Z[1,1,,]) #average mean dry spell length
d01 <- as.data.frame(sqrt(Z[2,1,,])) #average sd dry spell length
d02 <- as.data.frame(Z[3,1,,]) #average max dry spell length
d03
=V[1,1,]
d01T=sqrt(V[2,1,])
d02T=V[3,1,]
d03T
= "red"
RecRed = "blue"
RecBlue
# pdf(file=paste0(tempdir(), "/outputPlots/DryWetStats.pdf"), width=9, height=4)
= par(mfrow=c(1,3), mar=c(2,2.5,2,1),
oldpar oma=c(2,2,0,0), mgp=c(2,1,0), cex.axis=0.8)
par(mfrow=c(1,3), mar=c(2,2.5,2,1), oma=c(2,2,0,0), mgp=c(2,1,0),cex.axis=0.8)
#Mean
#ylimit=range(c(d01,d01hist),na.rm=T)
=boxplot(d01, plot=F, na.rm=T, names=1:12)
bb=c(range(c(d01,d01T),na.rm=T))
ylimit=matrix(nrow=nsim, ncol=12)
outfor(b in 1:12){
=d01[,b]
x=quantile(x, c(wLO,wHI),na.rm=T)
quants$stats[c(1,5),b] = quants
bb=which(x < quants[1] | x > quants[2])
outs1:length(outs), b]= x[outs]
out[
}bxp(bb, ylim=ylimit,na.rm=T, outline=F,xlab="",ylab="")
mtext("days", side=2, outer = T)
title(main="average mean dry spell length")
for(m in 1:12){points(rep(m, length(which(is.na(out[,m])==F))), out[!is.na(out[,m]),m])}
points(1:12, d01T, pch=17, cex=1, col=RecRed)
lines(1:12, d01T, col=RecRed)
#Standard Deviation
=boxplot(d02, plot=F, na.rm=T, names=1:12)
bb=c(range(c(d02,d02T),na.rm=T))
ylimit=matrix(nrow=nsim, ncol=12)
outfor(b in 1:12){
=d02[,b]
x=quantile(x, c(wLO,wHI),na.rm=T)
quants$stats[c(1,5),b] = quants
bb=which(x < quants[1] | x > quants[2])
outs1:length(outs), b]= x[outs]
out[
}bxp(bb, ylim=ylimit,na.rm=T, outline=F,xlab="",ylab="")
title(main="average sd dry spell length")
mtext("month", side=1, outer = T, line=0.5)
for(m in 1:12){points(rep(m, length(which(is.na(out[,m])==F))), out[!is.na(out[,m]),m])}
points(1:12, d02T, pch=17, cex=1, col=RecRed)
lines(1:12, d02T, col=RecRed)
#Max Length
=boxplot(d03, plot=F, na.rm=T, names=1:12)
bb=c(range(c(d03,d03T),na.rm=T))
ylimit=matrix(nrow=nsim, ncol=12)
outfor(b in 1:12){
=d03[,b]
x=quantile(x, c(wLO,wHI),na.rm=T)
quants$stats[c(1,5),b] = quants
bb=which(x < quants[1] | x > quants[2])
outs1:length(outs), b]= x[outs]
out[
}bxp(bb, ylim=ylimit,xlab="",ylab="",na.rm=T, outline=F)
title(main="average max dry spell length")
for(m in 1:12){points(rep(m, length(which(is.na(out[,m])==F))), out[!is.na(out[,m]),m])}
points(1:12, d03T, pch=17, cex=1, col=RecRed)
lines(1:12, d03T, col=RecRed)
dev.off()
par(oldpar)
##########################################
}
spellstats(dat.d = z$dat.d, X = z$Xpamt,
syr = head(dat.d$year, 1),
eyr = tail(dat.d$year, 1),
nrealz = nrealz, nsim = nsim,
wLO = 0.05, wHI = 0.95)
Save your simulated weather ensemble to a file via the
writeSim
function. It will conveniently save each trace to
a .csv file.
# setwd() to desired location for writeSim to save .csv files containing the simulated precipitation and temperature
# setwd(tempdir())
#
# writeSim(wxOutput = z, nsim = nsim, nrealz = nrealz, debug = TRUE)
Running the wx()
weather generator code for a 5-year,
10-trace simulation on a laptop with the following characteristics
results in the below run time. Parallel computing was enabled via
numbCores = 11
in the wx() function. OS: Microsoft Windows
10 Enterprise 10.0.19044 Build 19044 Hardware: Intel(R) Core(TM)
i7-10850H CPU @2.70GHz, 2712 Mhz, 6 Cores,
12 Logical Processors. 16 GB installed physical memory.
#wxgenR weather generation run time:
print(difftime(endTime, startTime, units='mins'))
#> Time difference of 0.4688954 mins
The weather simulations use a 366-day per year framework in order to handle leap years. During leap years, all 366 days will have precipitation and temperature values (i.e., February 29th exists and contains data), but during non-leap years February 29th does not exist and a row of NULL values is added after December 31st in order to maintain the same length between leap years and non-leap years. Other datasets and algorithms use various approaches to handle leap years, such as avoiding leap years altogether, using a 360-day year, etc.
Because leap years are acceptable in the wxgenR
algorithm, it is possible (but unlikely) to have two or more leap years
in a row in the weather simulations since years are sampled at
random.
Please report any bugs or issues to either sgangopadhyay@usbr.gov or dwoodson@usbr.gov
For more details and examples, including analysis of the dataset used in this vignette, see the following works:
Bearup, L., Gangopadhyay, S., & Mikkelson, K. (2021). Hydroclimate Analysis Lower Santa Cruz River Basin Study (Technical Memorandum No ENV-2020-056). Bureau of Reclamation. <https://www.usbr.gov/lc/phoenix/programs/lscrbasin/LSCRBStudy.html>.
Gangopadhyay, S., Bearup, L. A., Verdin, A., Pruitt, T., Halper, E., & Shamir, E. (2019). A collaborative stochastic weather generator for climate impacts assessment in the Lower Santa Cruz River Basin, Arizona. Fall Meeting 2019, American Geophysical Union. <https://ui.adsabs.harvard.edu/abs/2019AGUFMGC41G1267G>.
Rajagopalan, B., Lall, U., and Tarboton, D. G. (1996). Nonhomogeneous Markov Model for Daily Precipitation, Journal of Hydrologic Engineering, 1, 33–40, <https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(33)>.
Verdin, A., Rajagopalan, B., Kleiber, W., and Katz, R. W. (2015). Coupled stochastic weather generation using spatial and generalized linear models, Stoch Environ Res Risk Assess, 29, 347–356, <https://doi.org/10.1007/s00477-014-0911-6>.
Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G., and Bert, F. (2018). A conditional stochastic weather generator for seasonal to multi-decadal simulations, Journal of Hydrology, 556, 835–846, <https://doi.org/10.1016/j.jhydrol.2015.12.036>.
This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Bureau of Reclamation nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the information.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.