GROMACS

Groningen Machine for Chemical Simulations

Reference Manual
Version 2018.8

GROMACS
Reference Manual

Version 2018.8

Contributions from

Emile Apol, Rossen Apostolov, Herman J.C. Berendsen,
Aldert van Buuren, Pir Bjelkmar, Rudi van Drunen,
Anton Feenstra, Sebastian Fritsch, Gerrit Groenhof,
Christoph Junghans, Jochen Hub, Peter Kasson,
Carsten Kutzner, Brad Lambeth, Per Larsson, Justin A. Lemkul,
Viveca Lindahl, Magnus Lundborg, Erik Marklund, Pieter Meulenhoff,
Teemu Murtola, Szilard Pall, Sander Pronk,

Roland Schulz, Michael Shirts, Alfons Sijbers,
Peter Tieleman, Christian Wennberg and Maarten Wolf.

Mark Abraham, Berk Hess, David van der Spoel, and Erik
Lindahl.

© 1991-2000: Department of Biophysical Chemistry, University of Groningen.
Nijenborgh 4, 9747 AG Groningen, The Netherlands.

(© 2001-2019: The GROMACS development teams at the Royal Institute of Technology and
Uppsala University, Sweden.

More information can be found on our website: www.gromacs.org.

http://www.gromacs.org

v

Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
— our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments on form and content are welcome, please send them to one of the mailing lists (see
WWW.Zromacs.org), or open an issue at redmine.gromacs.org. Corrections can also be made in the
GROMACS git source repository and uploaded to gerrit.gromacs.org.

We release an updated version of the manual whenever we release a new version of the software,
so in general it is a good idea to use a manual with the same major and minor release number as
your GROMACS installation.

On-line Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among
other things there is an on-line reference, several GROMACS mailing lists with archives and
contributed topologies/force fields.

Citation information
When citing this document in any scientific publication please refer to it as:

M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS
development team, GROMACS User Manual version 2018.8, www.gromacs.org
(2019)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4, 5, 6, 7, 8] when
you publish your results. Any future development depends on academic research grants, since the
package is distributed as free software!

GROMACS is Free Software

The entire GROMACS package is available under the GNU Lesser General Public License (LGPL),
version 2.1. This means it’s free as in free speech, not just that you can use it without pay-
ing us money. You can redistribute GROMACS and/or modify it under the terms of the LGPL
as published by the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. For details, check the COPYING file in the source code or consult
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page, www.gromacs.org. Have fun.

http://www.gromacs.org
http://redmine.gromacs.org
http://gerrit.gromacs.org
http://www.gromacs.org
http://www.gromacs.org
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gromacs.org

Contents

Introduction

1.1 Computational Chemistry and Molecular Modeling
1.2 Molecular Dynamics Simulations
1.3 Energy Minimization and Search Methods

Definitions and Units

2.1 NOtation v v oot e
22 MDunits e e e
2.3 Reducedunits L. e e
2.4 Mixed or Double precisiono o
Algorithms
3.1 Introduction L e
3.2 Periodic boundary conditions
3.2.1 Someuseful box types
3.2.2 Cut-offrestrictions oL
3.3 Thegroupconcept o v i v i i e e e e e e
3.4 Molecular Dynamics Lo
3.4.1 Initial conditions
34.2 Neighborsearching
343 Compute forceso
3.4.4 The leap-frogintegrator
3.4.5 The velocity Verletintegrator
3.4.6 Understanding reversible integrators: The Trotter decomposition
347 Multiple time Steppingo Lo

3.4.8 Temperature coupling

Do = -

O N 3 N

10

Vi Contents
349 Pressurecoupling 35
3.4.10 The complete update algorithm 42
3401 Output Step . . . v v v v i e e e e e e e e e e e 42

3.5 Shell molecular dynamics 44
3.5.1 Optimization of the shell positions 44

3.6 Constraint algorithms 45
3.6.1 SHAKE e 45

3.6.2 LINCS . . . e 46

3.7 Simulated Annealing 48
3.8 Stochastic Dynamics 49
3.9 Brownian Dynamics 50
3.10 Energy Minimization e 50
3.10.1 SteepestDescent e 50
3.10.2 Conjugate Gradient e 51
3.103 L-BFGS e 51

3.11 Normal-Mode Analysis 51
3.12 Free energy calculations L 52
3.12.1 Slow-growthmethods 52
3.12.2 Thermodynamic integration, 54

3.13 Replicaexchange 55
3.14 Essential Dynamics sampling 56
3.15 Expanded Ensemble 57
3.16 Parallelization 57
3.17 Domain decomposition e e e 57
3.17.1 Coordinate and force communication 58
3.17.2 Dynamic load balancing 0oL 58
3.17.3 Constraints in parallel 0 0. 60
3.17.4 Interaction ranges v« o v it e e e e e e e 60
3.17.5 Multiple-Program, Multiple-Data PME parallelization 61
3.17.6 Domain decomposition flow chart 63

3.18 Implicitsolvation e 63
4 Interaction function and force fields 67
4.1 Non-bonded interactions o 67

Contents vii
4.1.1 The Lennard-Jones interaction 68

4.1.2 Buckingham potential L 0oL 69

4.1.3 Coulomb interaction 70

4.1.4 Coulomb interaction with reaction field 70

4.1.5 Modified non-bonded interactions 71

4.1.6 Modified short-range interactions with Ewald summation 73

4.2 Bondedinteractions 73
42.1 Bondstretching L 74

4.2.2 Morse potential bond stretching, 75

4.2.3 Cubic bond stretching potential 75

4.2.4 FENE bond stretching potential 76

4.2.5 Harmonic angle potential 76

4.2.6 Cosine based angle potential oL, 77

4.277 Restricted bending potential oL oL 78

42.8 Urey-Bradley potential 79

429 Bond-Bondcrossterm 79
4.2.10 Bond-Anglecrossterm 79
4.2.11 Quartic angle potential 79
4.2.12 Improperdihedrals L 80
4.2.13 Properdihedrals 81
4.2.14 Tabulated bonded interaction functions 84

43 ReStraints e e e e e e e 86
4.3.1 Positionrestraintso 86

4.3.2 Flat-bottomed position restraints 87

433 Anglerestraints Lo 88

4.3.4 Dihedral restraintso 88

4.3.5 Distance restraints oL e e e e e e 89

4.3.6 Orientation restraintso .o 92

4.4 Polarization e 96
44.1 Simple polarizationo 96

4.4.2 Anharmonic polarization oL oL 96

443 Water polarization 97

44.4 Thole polarization 97

4.5 Freeenergy interaCtionsot et e 97

\2114 Contents
4.5.1 Soft-coreinteractions 100

4.6 Methods 102
4.6.1 Exclusions and 1-4 Interactions. 102

4.6.2 Charge Groups v v i i it e 103

4.6.3 Treatment of Cut-offs in the group scheme 103

4.7 Virtual interaction Sit€so e e 104
4.8 Long Range Electrostatics o 107
4.8.1 Ewaldsummation. 107

482 PME . . . e 108

483 P3M-AD 109

4.8.4 Optimizing Fourier transforms and PME calculations 110

4.9 Long Range Van der Waals interactions 110
4.9.1 Dispersion Correction e e 110

49.2 Lennard-JonesPME 0o, 112

410 Forcefield 115
4.10.1 GROMOS-96 e 115
4.10.2 OPLS/AA e 116
4103 AMBER e 116
4.104 CHARMM e 117
4.10.5 Coarse-grained force fields 117
4.10.6 MARTINI.o 118
4.10.7 PLUM . . .o e 118

5 Topologies 119
5.1 Introduction L 119
5.2 Particletype e 119
52,1 AtOMUEYPES . . o o v e e e e e e e e e 120

522 Virtnal Sites e 120

5.3 Parameterfiles 122
531 AtOmMS e e 122

5.3.2 Non-bonded parameters 122

5.3.3 Bonded parameters oL o 123

5.4 Molecule definition Lo 124

54.1 Moleculetypeentries 124

Contents ix

5.4.2 Intermolecular interactions 125

5.4.3 Intramolecular pair interactions 125

544 Exclusions 126

5.5 Implicit solvation parameters 126
5.6 Constraint algorithms L 127
5.7 pdb2gmxinputfiles 128
5.7.1 Residuedatabase 129

5.7.2 Residue to building block database 131

5.7.3 Atomrenaming database 131

5.7.4 Hydrogendatabase 132

5.7.5 Terminidatabase 133

5.7.6 Virtual site database o 135

5777 Specialbonds 136

5.8 Fileformats L 137
5.8.1 Topologyfile 137

5.82 Moleculeitpfile 146

5.83 Ifdefstatements 147

5.8.4 Topologies for free energy calculations 148

5.8.5 Constraintforces L Lo 150

5.8.6 Coordinatefile L 151

5.9 PForce field organization L. 152
59.1 Forcefieldfiles 152

5.9.2 Changing force-field parameters 153

593 Addingatomtypes e e e e e 153

6 Special Topics 155
6.1 Free energy implementation 155
6.2 Potential of meanforce L 156
6.3 Non-equilibrium pulling L 157
6.4 Thepullcode e 157
6.5 Adaptive biasingwith AWH o 161
6.5.1 Basicsofthemethod 162

6.5.2 Theinitial stage L. L 165

6.5.3 Choice of target distribution 166

Contents

6.5.4 Multiple independent or sharing biases 167
6.5.5 Reweighting and combining biaseddata 168
6.5.6 The frictionmetric 169
6.5.7 Usage 169
6.6 EnforcedRotation L 170
6.6.1 Fixed AxisRotation oo 170
6.6.2 Flexible Axis Rotation 175
6.6.3 Usage e 178
6.7 Electricfields 181
6.8 Computational Electrophysiology 182
6.8.1 Usage e e 183
6.9 Calculating a PMF using the free-energycode 185
6.10 Removing fastest degrees of freedom 186
6.10.1 Hydrogen bond-angle vibrations 187
6.10.2 Out-of-plane vibrations in aromatic groups 189
6.11 Viscosity calculation oL 189
6.12 Tabulated interaction functions 191
6.12.1 Cubic splines for potentials 191
6.12.2 User-specified potential functions 192
6.13 Mixed Quantum-Classical simulation techniques 193
6.13.1 Overview e 193
6.13.2 Usage e 194
6.13.3 Output 196
6.13.4 Future developments 197
6.14 Using VMD plug-ins for trajectory file /O 197
6.15 Interactive Molecular Dynamics 197
6.15.1 Simulation input preparation L. 197
6.15.2 Starting the simulation 0oL oL 198
6.15.3 Connectingfrom VMD oL oL 198
6.16 Embedding proteins into the membranes 198
Run parameters and Programs 201
7.1 Online documentation o vttt 201
7.2 Filetypes o o e e e e 201

Contents Xi
7.3 RunParameters 201
8 Analysis 203
8.1 Using Groups v v i it e e e e e 203
8.1.1 DefaultGroups 204

8.1.2 Selections L 206

8.2 Looking at your trajectory ot e e e e 207
8.3 General properties e e e e 207
8.4 Radial distribution functions Lo o 208
8.5 Correlation functionso 210
8.5.1 Theory of correlation functions 210

8.5.2 Using FFT for computationof the ACF 211

8.5.3 Special formsofthe ACF. 211

8.5.4 Some Applications L 211

8.6 Curve fitting in GROMACS 212
8.6.1 Sum of exponential functions, 212

8.6.2 Errorestimation 212

8.6.3 Interphase boundary demarcation 213

8.6.4 Transverse current autocorrelation function 213

8.6.5 Viscosity estimation from pressure autocorrelation function 213

8.7 Mean Square Displacement Lo oL 214
8.8 Bonds/distances, angles and dihedrals o000 214
8.9 Radius of gyration and distances 216
8.10 Root mean square deviations in structure 217
8.11 Covariance analysis L 218
8.12 Dihedral principal component analysis L. 220
8.13 Hydrogenbonds e 220
8.14 Protein-relateditems L. 222
8.15 Imterface-related items 222
A Some implementation details 227
A.1 Single Sum Virial in GROMACS 227
ALl Virial ..o 227
A.1.2 Virial from non-bonded forces 228
A.1.3 The intra-molecular shift (mol-shift) 229

xii Contents
A.1.4 Virial from CovalentBonds 230

A.1.5 Virialfrom SHAKE 231

A2 Optimizations v v v i e e e e e e e e e e e e 231
A.2.1 Inner LoopsforWater 231

B Averages and fluctuations 233
B.1 Formulae for averaging 233
B.2 Implementation L 234
B.2.1 PartofaSimulation 235

B.2.2 Combining two simulations 235

B.2.3 Summingenergy terms oL e 236
Bibliography 239
Index 253

Chapter 1
Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling. Computational chemistry is just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates. Molecular modeling indicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the goal being to under-
stand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often,
molecular modeling is used to design new materials, for which the accurate prediction of physical
properties of realistic systems is required.

Macroscopic physical properties can be distinguished by (a) static equilibrium properties, such
as the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function of a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrodinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish), the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions still
fail due to the complexity of the system, molecular modeling is based entirely on a similarity
analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-
Activity Relations) and many homology-based protein structure predictions belong to the latter
category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble

2 Chapter 1. Introduction

(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling, this has
two important consequences:

e The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

e While molecular simulations, in principle, provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [9],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [10].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore, MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases, a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several “snapshots” from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of [V interacting atoms:

627%‘ .
The forces are the negative derivatives of a potential function V (71,72, ...,7N):
ov
F,=—— 1.2
o (1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time

1.2. Molecular Dynamics Simulations

type of wavenumber

type of bond vibration (cm™1h)
C-H, O-H, N-H | stretch 3000-3500
C=C, C=0 stretch 1700-2000
HOH bending 1600

c-C stretch 1400-1600
H>CX sciss, rock | 1000-1500
CCC bending 800-1000
O-H---0 libration 400- 700
O-H---O stretch 50- 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded lig-
uids. Compare kT /h = 200 cm~! at 300 K.

represent a trajectory of the system. After initial changes, the system will usually reach an equi-
librium state. By averaging over an equilibrium trajectory, many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical

Using Newton’s equation of motion automatically implies the use of classical mechanics to
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton may tunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when
the resonance frequency v approximates or exceeds kp7'/h. Now at room temperature the
wavenumber o = 1/\ = v/c at which hv = kgT is approximately 200 cm~!. Thus, all
frequencies higher than, say, 100 cm~! may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table 1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:

(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energy U = Ej,, + Ep; and specific heat Cy (and to entropy
S and free energy A or G if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequency v are: [11]

1
UeM — ye 4 kT (x 14T) (1.3)
2 et — 1

4 Chapter 1. Introduction

QM _ x’e”
Oy = V+k<(€x_1)2—1>, (1.4)
where x = hv/kT. The classical oscillator absorbs too much energy (k7°), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of %hu.
(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The
rationale behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [12]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [13].

Electrons are in the ground state

In MD we use a conservative force field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (the Born-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate

Force fields provide the forces. They are not really a part of the simulation method and
their parameters can be modified by the user as the need arises or knowledge improves.
But the form of the forces that can be used in a particular program is subject to limitations.
The force field that is incorporated in GROMACS is described in Chapter 4. In the present
version the force field is pair-additive (apart from long-range Coulomb forces), it cannot
incorporate polarizabilities, and it does not contain fine-tuning of bonded interactions. This
urges the inclusion of some limitations in this list below. For the rest it is quite useful and
fairly reliable for biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive

This means that all non-bonded forces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented by effective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure, i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus, the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cut off
In this version, GROMACS always uses a cut-off radius for the Lennard-Jones interactions

1.3. Energy Minimization and Search Methods 5

and sometimes for the Coulomb interactions as well. The “minimum-image convention”
used by GROMACS requires that only one image of each particle in the periodic boundary
conditions is considered for a pair interaction, so the cut-off radius cannot exceed half the
box size. That is still pretty big for large systems, and trouble is only expected for systems
containing charged particles. But then truly bad things can happen, like accumulation of
charges at the cut-off boundary or very wrong energies! For such systems, you should
consider using one of the implemented long-range electrostatic algorithms, such as particle-
mesh Ewald [14, 15].

Boundary conditions are unnatural

Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). We must avoid this condition if
we wish to simulate a bulk system. As such, we use periodic boundary conditions to avoid
real phase boundaries. Since liquids are not crystals, something unnatural remains. This
item is mentioned last because it is the least of the evils. For large systems, the errors are
small, but for small systems with a lot of internal spatial correlation, the periodic boundaries
may enhance internal correlation. In that case, beware of, and test, the influence of system
size. This is especially important when using lattice sums for long-range electrostatics, since
these are known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS provides a
number of methods for local energy minimization, as detailed in sec. 3.10.

The potential energy function of a (macro)molecular system is a very complex landscape (or hy-
persurface) in a large number of dimensions. It has one deepest point, the global minimum and
a very large number of local minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are non-negative. The matrix of
second derivatives, which is called the Hessian matrix, has non-negative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time. Impractical
methods exist, some much faster than others [16]. However, given a starting configuration, it
is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other

6 Chapter 1. Introduction

minima and hope to discover the global minimum in the process, the best advice is to experiment
with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system, while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure, e.g. by removing barriers
(remove dihedral angle functions or replace repulsive potentials by soft-core potentials [17]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [18], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

e Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

e Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

e Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that for IV particles a 3N x 3N matrix must be computed, stored,
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. S0 GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a
step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the
search is fast, but the motion is always downhill. This is a simple and sturdy, but somewhat
stupid, method: its convergence can be quite slow, especially in the vicinity of the local minimum!
The faster-converging conjugate gradient method (see e.g. [19]) uses gradient information from
previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs
worse far away from the minimum. GROMACS also supports the L-BFGS minimizer, which is
mostly comparable to conjugate gradient method, but in some cases converges faster.

Chapter 2
Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:

Item ‘ Notation ‘ Example
Vector Bold italic ;
Vector Length | Italic T

We define the lowercase subscripts ¢, j, k and [to denote particles: 7; is the position vector of
particle ¢, and using this notation:

T, =T; —T; (2.1)
rij = [Ty (2.2)

The force on particle ¢ is denoted by F'; and
F';; = force on i exerted by j 2.3)

Please note that we changed notation as of version 2.0 to r;; = r; — 7; since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call them MD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1. The values used in GROMACS
are taken from the CODATA Internationally recommended 2010 values of fundamental physical
constants (see http://nist.gov).

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = ﬁ = 138.935 458 kJ mol~! nm e 2. It relates the mechan-

8 Chapter 2. Definitions and Units

Quantity Symbol | Unit

length r nm= 10" m

mass m u (unified atomic mass unit) = 1.660 538 921 x 10~%" kg
time t ps=10"125

charge q e = elementary charge = 1.602 176 565(x1071Y C
temperature T K

Table 2.1: Basic units used in GROMACS.

Quantity Symbol | Unit

energy E,V | kKImol™!

Force F kJ mol~! nm~!

pressure P bar

velocity v nm ps~! = 1000 m s~*

dipole moment u e nm

electric potential P kI mol~! e=! = 0.010 364 269 19 Volt

electric field E kI mol™' nm~! ¢~! = 1.036426919 x 10" Vm~!

Table 2.2: Derived units. Note that an additional conversion factor of 10?8 a.m.u (~16.6) is applied
to get bar instead of internal MD units in the energy and log files.

ical quantities to the electrical quantities as in

2 2
N (2.4)
T T

Electric potentials ® and electric fields E are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We strongly recommend following the usual practice of including
the factor f in expressions that evaluate ¢ and E:

o =F3 0 Ej,,j, 2.5)
J
E(r)=f) qg-m,, (2.6)

With these definitions, g® is an energy and ¢ F is a force. The units are those given in Table 2.2:
about 10 mV for potential. Thus, the potential of an electronic charge at a distance of 1 nm equals
f = 140 units ~ 1.4 V. (exact value: 1.4399645 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is therefore strongly discouraged! In particular: if A are used instead of nm, the unit
of time changes to 0.1 ps. If kcal mol~! (= 4.184 kJ mol 1) is used instead of kJ mol~! for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ mol~!, expecting
nm as the unit of length. Although careful rescaling of charges may still yield consistency, it is
clear that such confusions must be rigidly avoided.

2.3. Reduced units 9

Symbol | Name Value
Nav | Avogadro’s number 6.022 14129 x 10?3 mol~!
R gas constant 8.3144621 x 1073 kI mol ' K~!
kg Boltzmann’s constant | idem
h Planck’s constant 0.399031 271 kJ mol~! ps
h Dirac’s constant 0.063 507 799 3 kJ mol~! ps
c velocity of light 299 792.458 nm ps !

Table 2.3: Some Physical Constants

Quantity Symbol | Relation to SI
Length r* ro!

Mass m* mM~!

Time t* tol \/e/M
Temperature T kT e !
Energy E* Ee !

Force F* Foel
Pressure p* Pode !
Velocity v* v/MJe
Density p* No3v—1

Table 2.4: Reduced Lennard-Jones quantities

In terms of the MD units, the usual physical constants take on different values (see Table 2.3).
All quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constant k and the gas constant R: their value is 0.008 314 462 1 kJ mol~! K~

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e.,
setting €;; = 04 = m; = kp = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. The one exception is the
temperature, which is expressed in 0.008 314 462 1 reduced units. This is a consequence of using
Boltzmann’s constant in the evaluation of temperature in the code. Thus not 7', but kg7, is the
reduced temperature. A GROMACS temperature 7' = 1 means a reduced temperature of 0.008 . . .
units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.272 36.

In Table 2.4 quantities are given for LJ potentials:

=] (2)"- (2]

10 Chapter 2. Definitions and Units

2.4 Mixed or Double precision

GROMACS can be compiled in either mixed or double precision. Documentation of previous
GROMACS versions referred to “single precision”, but the implementation has made selective
use of double precision for many years. Using single precision for all variables would lead to a
significant reduction in accuracy. Although in “mixed precision” all state vectors, i.e. particle
coordinates, velocities and forces, are stored in single precision, critical variables are double pre-
cision. A typical example of the latter is the virial, which is a sum over all forces in the system,
which have varying signs. In addition, in many parts of the code we managed to avoid double pre-
cision for arithmetic, by paying attention to summation order or reorganization of mathematical
expressions. The default configuration uses mixed precision, but it is easy to turn on double preci-
sion by adding the option ~-DGMX_DOUBLE=0n to cmake. Double precision will be 20 to 100%
slower than mixed precision depending on the architecture you are running on. Double precision
will use somewhat more memory and run input, energy and full-precision trajectory files will be
almost twice as large.

The energies in mixed precision are accurate up to the last decimal, the last one or two decimals
of the forces are non-significant. The virial is less accurate than the forces, since the virial is only
one order of magnitude larger than the size of each element in the sum over all atoms (sec. A.1).
In most cases this is not really a problem, since the fluctuations in the virial can be two orders
of magnitude larger than the average. Using cut-offs for the Coulomb interactions cause large
errors in the energies, forces, and virial. Even when using a reaction-field or lattice sum method,
the errors are larger than, or comparable to, the errors due to the partial use of single precision.
Since MD is chaotic, trajectories with very similar starting conditions will diverge rapidly, the
divergence is faster in mixed precision than in double precision.

For most simulations, mixed precision is accurate enough. In some cases double precision is
required to get reasonable results:

e normal mode analysis, for the conjugate gradient or 1-bfgs minimization and the calculation
and diagonalization of the Hessian

e long-term energy conservation, especially for large systems

Chapter 3
Algorithms

3.1 Introduction

In this chapter we first give describe some general concepts used in GROMACS: periodic bound-
ary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is described in
sec. 3.4: first a global form of the algorithm is given, which is refined in subsequent subsections.
The (simple) EM (Energy Minimization) algorithm is described in sec. 3.10. Some other algo-
rithms for special purpose dynamics are described after this.

A few issues are of general interest. In all cases the systemm must be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of the topology of the molecules and of the force field and the calculation of forces is
given in chapter 4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. The analysis of the data generated by an MD simulation is treated in
chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to apply periodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If the system is crystalline, such boundary conditions are desired (although motions
are naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron
and the fruncated octahedron [20] are closer to being a sphere than a cube is, and are therefore

12 Chapter 3. Algorithms

y
Oj oy Oj
,,,,,, bl M R hd } S
O Oj O
j j j
o o o
Oj _of Oj X
L o L
y
Oj oy Oj
I . bl U R AR
O Oj O
i j j
Ld o LA
Oj _of Oj X
o o o

Figure 3.1: Periodic boundary conditions in two dimensions.

better suited to the study of an approximately spherical macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. At the same time, rhombic dodecahedra and truncated octahedra are special cases of
triclinic unit cells; the most general space-filling unit cells that comprise all possible space-filling
shapes [21]. For this reason, GROMACS is based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one — the nearest — image of each particle is considered for short-range non-bonded in-
teraction terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the
3 box vectors a,b and c. The box vectors must satisfy the following conditions:

ay:az:bzzo 3.1
az; >0, by>0, c;>0 (3.2)
1 1 1
|b$| < iamv |Cm| < 561907 |Cy| < By by 3.3)

Equations 3.1 can always be satisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-
shaped volume for efficiency, as illustrated in Fig. 3.1 for a 2-dimensional system. Therefore,
from the output trajectory it might seem that the simulation was done in a rectangular box. The
program t r jconv can be used to convert the trajectory to a different unit-cell representation.

3.2. Periodic boundary conditions 13

Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance | volume | a b c /bc Lac Zab
d 0 0
cubic d 3 0 d 0 90° 90° 90°
0 0 d
rhombic d 0 % d
dodecahedron d Vedd | 0 d 3d 60° 60° 90°
(xy-square) 0.707d% | 0 0 % V2d
rhombic d % d % d
dodecahedron d V2dd | 0 3V3d IV3d| 60° 60° 60°
(xy-hexagon) 0.707d% | 0 0 %\/6 d
truncated d % d —% d
octahedron d V3d3 | 0 2v2d 1v2d | 7T1.53° 109.47° T1.53°
07704 | 0 0 £V6d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient
to simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can
only be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table 3.1.
The rhombic dodecahedron (Fig. 3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having
the same image distance. This saves about 29% of CPU-time when simulating a spherical or
flexible molecule in solvent. There are two different orientations of a rhombic dodecahedron that
satisfy equations 3.1, 3.2 and 3.3. The program editconf produces the orientation which has
a square intersection with the xy-plane. This orientation was chosen because the first two box
vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can

14 Chapter 3. Algorithms

be useful for simulations of membrane proteins. In this case the cross-section with the xy-plane is
a hexagon, which has an area which is 14% smaller than the area of a square with the same image
distance. The height of the box (c,) should be changed to obtain an optimal spacing. This box
shape not only saves CPU time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded inter-
actions may not exceed half the shortest box vector:

1 .
Re < 5 min([[al], [[b]], [el), (3.4)

because otherwise more than one image would be within the cut-off distance of the force. When a
macromolecule, such as a protein, is studied in solution, this restriction alone is not sufficient: in
principle, a single solvent molecule should not be able to ‘see’ both sides of the macromolecule.
This means that the length of each box vector must exceed the length of the macromolecule in the
direction of that edge plus two times the cut-off radius R.. It is, however, common to compromise
in this respect, and make the solvent layer somewhat smaller in order to reduce the computational
cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search the
extra restriction is weak:

R, < min(ag, by, c.) 3.5)

For simple search the extra restriction is stronger:
L .
R. < B min(ag, by, c.) (3.6)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular
image can therefore always be identified by an index pointing to one of 27 translation vectors and
constructed by applying a translation with the indexed vector (see 3.4.3). Restriction (3.5) ensures
that only 26 images need to be considered.

3.3 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain
actions on. The maximum number of groups is 256, but each atom can only belong to six different
groups, one each of the following:

temperature-coupling group The temperature coupling parameters (reference temperature, time
constant, number of degrees of freedom, see 3.4.4) can be defined for each T-coupling group
separately. For example, in a solvated macromolecule the solvent (that tends to generate
more heating by force and integration errors) can be coupled with a shorter time constant to
a bath than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule.
Many different T-coupling groups may be defined. See also center of mass groups below.

3.4. Molecular Dynamics 15

freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration, e.g. to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on
just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Many freeze groups can
be defined. Frozen coordinates are unaffected by pressure scaling; in some cases this can
produce unwanted results, particularly when constraints are also used (in this case you will
get very large pressures). Accordingly, it is recommended to avoid combining freeze groups
with constraints and pressure coupling. For the sake of equilibration it could suffice to
start with freezing in a constant volume simulation, and afterward use position restraints in
conjunction with constant pressure.

accelerate group On each atom in an “accelerate group” an acceleration a? is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

energy-monitor group Mutual interactions between all energy-monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256 x256 items! Better use
this concept sparingly.
All non-bonded interactions between pairs of energy-monitor groups can be excluded (see
details in the User Guide). Pairs of particles from excluded pairs of energy-monitor groups
are not put into the pair list. This can result in a significant speedup for simulations where
interactions within or between parts of the system are not required.

center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful, e.g. for systems
where there is limited friction (e.g. gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for temperature coupling and center of mass motion
removal.

Compressed position output group In order to further reduce the size of the compressed tra-
jectory file (. xtc or .tng), it is possible to store only a subset of all particles. All x-
compression groups that are specified are saved, the rest are not. If no such groups are
specified, than all atoms are saved to the compressed trajectory file.

The use of groups in GROMACS tools is described in sec. 8.1.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig. 3.3. Each MD or EM run requires as input a set of
initial coordinates and — optionally — initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the online manual at
WWW.Zromacs.org.

http://www.gromacs.org

16

Chapter 3

. Algorithms

THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V' as a function of atom positions
Positions 7 of all atoms in the system
Velocities v of all atoms in the system

4

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

ov
- 8’!‘i

is computed by calculating the force between non-bonded atom

pairs:
Fi=3;Fi
plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor may be
computed.

\’
3. Update configuration

F;=

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

& _ Fy
dtz my;
or
dT‘Z‘ dvi Fi
s =t
dt Yodt omy
g

4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm

3.4. Molecular Dynamics 17

Velocity

Figure 3.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

3.4.1 Initial conditions
Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and
topologies are described in chapter 4 and 5, respectively. All this information is static; it is never
modified during the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size and shape is determined by three vectors (nine numbers) by, b, b3, which
represent the three basis vectors of the periodic box.

If the run starts at ¢ = ¢y, the coordinates at ¢ = ¢y must be known. The leap-frog algorithm, the
default algorithm used to update the time step with At (see 3.4.4), also requires that the velocities
att =tg — %At are known. If velocities are not available, the program can generate initial atomic
velocities v;, ¢ = 1...3N with a (Fig. 3.4) at a given absolute temperature 7":

my; 77’LZ"UZ2
p(vi) =4/ 5 kT <P (— ST > (3.7)

18 Chapter 3. Algorithms

where k is Boltzmann’s constant (see chapter 2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbers Ry in the range 0 < R < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution \/k7"/m;. Since the resulting total energy will not correspond exactly to the
required temperature 7', a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly to 1" (see eqn. 3.18).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,
however, the update algorithm introduces a very slow change in the center-of-mass velocity, and
therefore in the total kinetic energy of the system — especially when temperature coupling is used.
If such changes are not quenched, an appreciable center-of-mass motion can develop in long runs,
and the temperature will be significantly misinterpreted. Something similar may happen due to
overall rotational motion, but only when an isolated cluster is simulated. In periodic systems with
filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not
cause such problems.

3.4.2 Neighbor searching

As mentioned in chapter 4, internal forces are either generated from fixed (static) lists, or from
dynamic lists. The latter consist of non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig. 3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equation 3.1 ensures that we can reset particles in a rectangular box by first
shifting them with box vector c, then with b and finally with a. Equations 3.3, 3.4 and 3.5 ensure
that we can find the 14 nearest triclinic images within a linear combination that does not involve
multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs ¢, 7 for which the distance
r;; between 7 and the nearest image of j is less than a given cut-off radius 12.. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs a pair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains particles ¢, a displacement vector for
particle ¢, and all particles j that are within r11ist of this particular image of particle 7. The list
is updated every nst1ist steps.

To make the neighbor list, all particles that are close (i.e. within the neighbor list cut-off) to a given
particle must be found. This searching, usually called neighbor search (NS) or pair search, involves
periodic boundary conditions and determining the image (see sec. 3.2). The search algorithm is
O(N), although a simpler O(N?) algorithm is still available under some conditions.

3.4. Molecular Dynamics 19

Cut-off schemes: group versus Verlet

From version 4.6, GROMACS supports two different cut-off scheme setups: the original one
based on particle groups and one using a Verlet buffer. There are some important differences
that affect results, performance and feature support. The group scheme can be made to work
(almost) like the Verlet scheme, but this will lead to a decrease in performance. The group scheme
is especially fast for water molecules, which are abundant in many simulations, but on the most
recent x86 processors, this advantage is negated by the better instruction-level parallelism available
in the Verlet-scheme implementation. The group scheme is deprecated in version 5.0, and will be
removed in a future version. For practical details of choosing and setting up cut-off schemes,
please see the User Guide.

In the group scheme, a neighbor list is generated consisting of pairs of groups of at least one
particle. These groups were originally charge groups (see sec. 3.4.2), but with a proper treatment
of long-range electrostatics, performance in unbuffered simulations is their only advantage. A
pair of groups is put into the neighbor list when their center of geometry is within the cut-off
distance. Interactions between all particle pairs (one from each charge group) are calculated for
a certain number of MD steps, until the neighbor list is updated. This setup is efficient, as the
neighbor search only checks distance between charge-group pair, not particle pairs (saves a factor
of 3 x 3 = 9 with a three-particle water model) and the non-bonded force kernels can be optimized
for, say, a water molecule “group”. Without explicit buffering, this setup leads to energy drift as
some particle pairs which are within the cut-off don’t interact and some outside the cut-off do
interact. This can be caused by

e particles moving across the cut-off between neighbor search steps, and/or

e for charge groups consisting of more than one particle, particle pairs moving in/out of the
cut-off when their charge group center of geometry distance is outside/inside of the cut-off.

Explicitly adding a buffer to the neighbor list will remove such artifacts, but this comes at a high
computational cost. How severe the artifacts are depends on the system, the properties in which
you are interested, and the cut-off setup.

The Verlet cut-off scheme uses a buffered pair list by default. It also uses clusters of particles, but
these are not static as in the group scheme. Rather, the clusters are defined spatially and consist
of 4 or 8 particles, which is convenient for stream computing, using e.g. SSE, AVX or CUDA on
GPUs. At neighbor search steps, a pair list is created with a Verlet buffer, ie. the pair-list cut-off
is larger than the interaction cut-off. In the non-bonded kernels, interactions are only computed
when a particle pair is within the cut-off distance at that particular time step. This ensures that
as particles move between pair search steps, forces between nearly all particles within the cut-off
distance are calculated. We say nearly all particles, because GROMACS uses a fixed pair list
update frequency for efficiency. A particle-pair, whose distance was outside the cut-off, could
possibly move enough during this fixed number of steps that its distance is now within the cut-
off. This small chance results in a small energy drift, and the size of the chance depends on the
temperature. When temperature coupling is used, the buffer size can be determined automatically,
given a certain tolerance on the energy drift.

The Verlet cut-off scheme is implemented in a very efficient fashion based on clusters of particles.
The simplest example is a cluster size of 4 particles. The pair list is then constructed based on

20 Chapter 3. Algorithms

cluster pairs. The cluster-pair search is much faster searching based on particle pairs, because
4 x 4 = 16 particle pairs are put in the list at once. The non-bonded force calculation kernel can
then calculate many particle-pair interactions at once, which maps nicely to SIMD or SIMT units
on modern hardware, which can perform multiple floating operations at once. These non-bonded
kernels are much faster than the kernels used in the group scheme for most types of systems,
particularly on newer hardware.

Additionally, when the list buffer is determined automatically as described below, we also apply
dynamic pair list pruning. The pair list can be constructed infrequently, but that can lead to a lot
of pairs in the list that are outside the cut-off range for all or most of the life time of this pair
list. Such pairs can be pruned out by applying a cluster-pair kernel that only determines which
clusters are in range. Because of the way the non-bonded data is regularized in GROMACS, this
kernel is an order of magnitude faster than the search and the interaction kernel. On the GPU this
pruning is overlapped with the integration on the CPU, so it is free in most cases. Therefore we
can prune every 4-10 integration steps with little overhead and significantly reduce the number of
cluster pairs in the interaction kernel. This procedure is applied automatically, unless the user set
the pair-list buffer size manually.

Energy drift and pair-list buffering

For a canonical (NVT) ensemble, the average energy error caused by diffusion of j particles from
outside the pair-list cut-off r, to inside the interaction cut-off r. over the lifetime of the list can
be determined from the atomic displacements and the shape of the potential at the cut-off. The
displacement distribution along one dimension for a freely moving particle with mass m over time
t at temperature 7' is a Gaussian G () of zero mean and variance o2 = t2kT /m. For the distance
between two particles, the variance changes to 02 = 0% = t?kgT(1/m1 + 1/ms). Note that
in practice particles usually interact with (bump into) other particles over time ¢ and therefore the
real displacement distribution is much narrower. Given a non-bonded interaction cut-off distance
of r. and a pair-list cut-off ry, = r. + 1 for r;, the Verlet buffer size, we can then write the average
energy error after time ¢ for all missing pair interactions between a single ¢ particle of type 1
surrounded by all j particles that are of type 2 with number density ps, when the inter-particle
distance changes from rq to 7, as:

(AV) = /0 b / °° 47r7“(2)P2V(rt)G(

To evaluate this analytically, we need to make some approximations. First we replace V' (r;) by
a Taylor expansion around r., then we can move the lower bound of the integral over ry to —oo
which will simplify the result:

Tt —To

) dro dry (3.3)

(AV) =~ /C 47Tr(2)p2{V’(rc)(rt—rC)+
—oo Jry

1
V”(rc)ﬁ(rt — 7“6)2 +

1
V/”(Tc)g(rt . Tc)3 +

g

O((rt - rc)4) }G(Tt — TO) drodry (3.9)

3.4. Molecular Dynamics 21

Replacing the factor 7 by (r, +)2, which results in a slight overestimate, allows us to calculate
the integrals analytically:

(AV) =~ Amw(re+ 0)2p2 /_7:0 /;O [V’(Tc)(rt —re) +
V”(rc)%(rt)’

Tt —To

V/”(TC)%(T,: — rc)ﬂG(.

= dx(ry+ J)ng{;V’(rc) {rwG(ij) —(r2 + 02)E<Z))] +
V) [g(rg 4 202)(;(7;*_’) (4 302)E(“)} +
1

S oysm 2 2 ™
24V (re) [rba(rb + 50)G(-)

) dro dry (3.10)

Ty

— (rp + 6rio® + 304)E<)] } (3.11)

g

where G(z) is a Gaussian distribution with 0 mean and unit variance and E(z) = Jerfc(z/v/2).
We always want to achieve small energy error, so o will be small compared to both r. and ry,
thus the approximations in the equations above are good, since the Gaussian distribution decays
rapidly. The energy error needs to be averaged over all particle pair types and weighted with
the particle counts. In GROMACS we don’t allow cancellation of error between pair types, so
we average the absolute values. To obtain the average energy error per unit time, it needs to be
divided by the neighbor-list life time ¢t = (nstlist — 1) x dt. The function can not be inverted
analytically, so we use bisection to obtain the buffer size r}, for a target drift. Again we note that in
practice the error we usually be much smaller than this estimate, as in the condensed phase particle
displacements will be much smaller than for freely moving particles, which is the assumption used
here.

When (bond) constraints are present, some particles will have fewer degrees of freedom. This will
reduce the energy errors. For simplicity, we only consider one constraint per particle, the heaviest
particle in case a particle is involved in multiple constraints. This simplification overestimates the
displacement. The motion of a constrained particle is a superposition of the 3D motion of the
center of mass of both particles and a 2D rotation around the center of mass. The displacement in
an arbitrary direction of a particle with 2 degrees of freedom is not Gaussian, but rather follows
the complementary error function:

VT (| >
W erfc 5o (3.12)

where o is again t>kgT/m. This distribution can no longer be integrated analytically to obtain
the energy error. But we can generate a tight upper bound using a scaled and shifted Gaussian
distribution (not shown). This Gaussian distribution can then be used to calculate the energy error
as described above. The rotation displacement around the center of mass can not be more than the
length of the arm. To take this into account, we scale o in eqn. 3.12 (details not presented here) to
obtain an overestimate of the real displacement. This latter effect significantly reduces the buffer

2

22 Chapter 3. Algorithms

1 0_Z E T T y T T T T T

107 estimate 1x1 |

107

drift per atom (kJ/mol/ps)

mixed precision

0 0.02 0.04 0.06 0.08 0.1
Verlet buffer (nm)

Figure 3.5: Energy drift per atom for an SPC/E water system at 300K with a time step of 2 fs and
a pair-list update period of 10 steps (pair-list life time: 18 fs). PME was used with ewald-rtol
set to 10~°; this parameter affects the shape of the potential at the cut-off. Error estimates due to
finite Verlet buffer size are shown for a 1 x 1 atom pair list and 4 x 4 atom pair list without and
with (dashed line) cancellation of positive and negative errors. Real energy drift is shown for sim-
ulations using double- and mixed-precision settings. Rounding errors in the SETTLE constraint
algorithm from the use of single precision causes the drift to become negative at large buffer size.
Note that at zero buffer size, the real drift is small because positive (H-H) and negative (O-H)
energy errors cancel.

size for longer neighborlist lifetimes in e.g. water, as constrained hydrogens are by far the fastest
particles, but they can not move further than 0.1 nm from the heavy atom they are connected to.

There is one important implementation detail that reduces the energy errors caused by the finite
Verlet buffer list size. The derivation above assumes a particle pair-list. However, the GROMACS
implementation uses a cluster pair-list for efficiency. The pair list consists of pairs of clusters of
4 particles in most cases, also called a 4 x 4 list, but the list can also be 4 x 8 (GPU CUDA
kernels and AVX 256-bit single precision kernels) or 4 x 2 (SSE double-precision kernels). This
means that the pair-list is effectively much larger than the corresponding 1 x 1 list. Thus slightly
beyond the pair-list cut-off there will still be a large fraction of particle pairs present in the list.
This fraction can be determined in a simulation and accurately estimated under some reasonable
assumptions. The fraction decreases with increasing pair-list range, meaning that a smaller buffer
can be used. For typical all-atom simulations with a cut-off of 0.9 nm this fraction is around 0.9,
which gives a reduction in the energy errors of a factor of 10. This reduction is taken into account
during the automatic Verlet buffer calculation and results in a smaller buffer size.

In Fig. 3.5 one can see that for small buffer sizes the drift of the total energy is much smaller
than the pair energy error tolerance, due to cancellation of errors. For larger buffer size, the error
estimate is a factor of 6 higher than drift of the total energy, or alternatively the buffer estimate is
0.024 nm too large. This is because the protons don’t move freely over 18 fs, but rather vibrate.

3.4. Molecular Dynamics 23

Figure 3.6: Grid search in two dimensions. The arrows are the box vectors.

Cut-off artifacts and switched interactions

With the Verlet scheme, the pair potentials are shifted to be zero at the cut-off, which makes the
potential the integral of the force. This is only possible in the group scheme if the shape of the
potential is such that its value is zero at the cut-off distance. However, there can still be energy
drift when the forces are non-zero at the cut-off. This effect is extremely small and often not
noticeable, as other integration errors (e.g. from constraints) may dominate. To completely avoid
cut-off artifacts, the non-bonded forces can be switched exactly to zero at some distance smaller
than the neighbor list cut-off (there are several ways to do this in GROMACS, see sec. 4.1.5). One
then has a buffer with the size equal to the neighbor list cut-off less the longest interaction cut-off.

Simple search

Due to eqns. 3.1 and 3.6, the vector r;; connecting images within the cut-off . can be found by
constructing:

v = T —T; (3.13)
r" = " —cxround(r/c,) (3.14)
" = 7" —bxround(r,/by) (3.15)
ri; = 1 —axround(r,/a;) (3.16)

When distances between two particles in a triclinic box are needed that do not obey eqn. 3.1, many
shifts of combinations of box vectors need to be considered to find the nearest image.

Grid search

The grid search is schematically depicted in Fig. 3.6. All particles are put on the NS grid, with the
smallest spacing > R./2 in each of the directions. In the direction of each box vector, a particle

24 Chapter 3. Algorithms

¢ has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
¢ and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image of 7. As Fig. 3.6 shows, some grid cells may be searched more than
once for different images of ¢. This is not a problem, since, due to the minimum image convention,
at most one image will “see” the j-particle. For every particle, fewer than 125 (53) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N?) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferred box shape.

Charge groups

Charge groups were originally introduced to reduce cut-off artifacts of Coulomb interactions.
When a plain cut-off is used, significant jumps in the potential and forces arise when atoms with
(partial) charges move in and out of the cut-off radius. When all chemical moieties have a net
charge of zero, these jumps can be reduced by moving groups of atoms with net charge zero,
called charge groups, in and out of the neighbor list. This reduces the cut-off effects from the
charge-charge level to the dipole-dipole level, which decay much faster. With the advent of full
range electrostatics methods, such as particle-mesh Ewald (sec. 4.8.2), the use of charge groups
is no longer required for accuracy. It might even have a slight negative effect on the accuracy or
efficiency, depending on how the neighbor list is made and the interactions are calculated.

But there is still an important reason for using “charge groups”: efficiency with the group cut-off
scheme. Where applicable, neighbor searching is carried out on the basis of charge groups which
are defined in the molecular topology. If the nearest image distance between the geometrical
centers of the atoms of two charge groups is less than the cut-off radius, all atom pairs between
the charge groups are included in the pair list. The neighbor searching for a water system, for
instance, is 32 = 9 times faster when each molecule is treated as a charge group. Also the highly
optimized water force loops (see sec. A.2.1) only work when all atoms in a water molecule form
a single charge group. Currently the name neighbor-search group would be more appropriate, but
the name charge group is retained for historical reasons. When developing a new force field, the
advice is to use charge groups of 3 to 4 atoms for optimal performance. For all-atom force fields
this is relatively easy, as one can simply put hydrogen atoms, and in some case oxygen atoms, in
the same charge group as the heavy atom they are connected to; for example: CHs, CH2, CH,
NH,, NH, OH, COs, CO.

With the Verlet cut-off scheme, charge groups are ignored.

3.4.3 Compute forces
Potential energy

When forces are computed, the potential energy of each interaction term is computed as well. The
total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb, and

3.4. Molecular Dynamics 25

bonded terms. It is also possible to compute these contributions for energy-monitor groups of
atoms that are separately defined (see sec. 3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the /N-particle system:
1N
Egin = Zmivf (3.17)
i=1
From this the absolute temperature 7' can be computed using:

1
5 NarkT = Ein (3.18)

where £ is Boltzmann’s constant and N4 is the number of degrees of freedom which can be
computed from:
Ndf = 3N — N¢ — Neom (319)

Here N, is the number of constraints imposed on the system. When performing molecular dynam-

ics Neom = 3 additional degrees of freedom must be removed, because the three center-of-mass

velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,

the rotation around the center of mass can also be removed, in this case N, = 6. When more

than one temperature-coupling group is used, the number of degrees of freedom for group 7 is:
3N — N. — Neom

Ni = (3N" — NY) NN (3.20)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

1 N
Biin = > miv; @ v; (3.21)
7

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Fjy;, and the virial

P—
o *
e o

2
v
where V' is the volume of the computational box. The scalar pressure P, which can be used for
pressure coupling in the case of isotropic systems, is computed as:

P = (E - 5) (3.22)

P = trace(P)/3 (3.23)
The virial = tensor is defined as:
— 1
E=-5 Z ri; @ Fyj (3.24)
1<)

The GROMACS implementation of the virial computation is described in sec. A.1.

26 Chapter 3. Algorithms

Figure 3.7: The Leap-Frog integration method. The algorithm is called Leap-Frog because = and
v are leaping like frogs over each other’s backs.

3.4.4 The leap-frog integrator

The default MD integrator in GROMACS is the so-called leap-frog algorithm [22] for the inte-
gration of the equations of motion. When extremely accurate integration with temperature and/or
pressure coupling is required, the velocity Verlet integrators are also present and may be preferable
(see 3.4.5). The leap-frog algorithm uses positions 7 at time ¢ and velocities v at time ¢t — %At; it
updates positions and velocities using the forces F'(¢) determined by the positions at time ¢ using
these relations:

wlt + %At) — u(t— %At) + %F(t) (3.25)
P4 A) = r(b) + Aot + %At) (3.26)

The algorithm is visualized in Fig. 3.7. It produces trajectories that are identical to the Verlet [23]
algorithm, whose position-update relation is

r(t+ At) = 2r(t) —r(t — At) + %F(t)Aﬂ +O(Ath) (3.27)

The algorithm is of third order in = and is time-reversible. See ref. [24] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

3.4.5 The velocity Verlet integrator

The velocity Verlet algorithm [25] is also implemented in GROMACS, though it is not yet fully
integrated with all sets of options. In velocity Verlet, positions 7 and velocities v at time ¢ are used
to integrate the equations of motion; velocities at the previous half step are not required.

w(t + %At) — w4+ %F(t) (3.28)
P4 A) = () + Ato(t+ %At) (3.29)

vt +A) = w(it LAY+ QA—tF(t +AD) (330)
m

3.4. Molecular Dynamics 27

or, equivalently,

At?
r(t+At) = r(t)+Atv+ %F(t) (3.31)
v(t+At) = v(t)+ 2% [F(t) + F(t + At)] (3.32)

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and
velocity Verlet will generate identical trajectories, as can easily be verified by hand from the equa-
tions above. Given a single starting file with the same starting point «(0) and v(0), leap-frog
and velocity Verlet will not give identical trajectories, as leap-frog will interpret the velocities as
corresponding to ¢ = —%At, while velocity Verlet will interpret them as corresponding to the
timepoint ¢ = 0.

3.4.6 Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we intro-
duce the reversible Trotter formulation of dynamics, which is also useful to understanding imple-
mentations of thermostats and barostats in GROMACS.

A system of coupled, first-order differential equations can be evolved from time ¢ = 0 to time ¢ by
applying the evolution operator

L(t) = exp(ilt)['(0)
iL = TI'-Vr, (3.33)

where L is the Liouville operator, and I' is the multidimensional vector of independent variables
(positions and velocities). A short-time approximation to the true operator, accurate at time At =
t/ P, is applied P times in succession to evolve the system as

I(t) = ﬁ exp(iLAL)L(0) (3.34)
=1

For NVE dynamics, the Liouville operator is
N N o4
iL=>Y vi-Vp,+Y —F(r;)- Vo, (3.35)
=1 =1
This can be split into two additive operators

N
iL1 = Z*F(Tz)v'vz

i=1 i
N
iLy = Y vi-Vp, (3.36)
i=1
Then a short-time, symmetric, and thus reversible approximation of the true dynamics will be

exp(iLAt) = exp(iLQ%At) exp(iL1At) exp(iLQ%At) +0O(A%). (3.37)

28 Chapter 3. Algorithms

This corresponds to velocity Verlet integration. The first exponential term over %At corresponds
to a velocity half-step, the second exponential term over At corresponds to a full velocity step,
and the last exponential term over %At is the final velocity half step. For future times ¢t = nAt,
this becomes

1 1 "
exp(iLnAt) =~ (exp(iL22At) exp(iLqAt) exp(iL22At)>
1 n—1
~ exp(ils iAt) (exp(iLlAt) exp(iLgAt))
1
exp(tL1At) exp(iLgiAt) (3.38)

This formalism allows us to easily see the difference between the different flavors of Verlet inte-
grators. The leap-frog integrator can be seen as starting with Eq. 3.37 with the exp (i L1 At) term,
instead of the half-step velocity term, yielding

exp(iLnAt) = exp (iL1At)exp (iLaAt) + O(A). (3.39)

Here, the full step in velocity is between ¢ — %At and t + %At, since it is a combination of the
velocity half steps in velocity Verlet. For future times ¢t = n/At, this becomes

exp(iLnAt) = (exp(iLlAt)exp(iLgAt)>. (3.40)

Although at first this does not appear symmetric, as long as the full velocity step is between ¢ — %At
and t + %At, then this is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity
Verlet, the kinetic energy and temperature will not necessarily be the same. Standard velocity
Verlet uses the velocities at the ¢ to calculate the kinetic energy and thus the temperature only at
time ¢; the kinetic energy is then a sum over all particles

KEun(t) = Z(! vi(t)>2

2m¢
1 /1 1 1 1 2
= > oy <2vi(t — A1)+ Fuilt + 2At)> : (3.41)

i

with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at
time ¢ based on the average kinetic energies at the timesteps ¢ + %At and t — %At, or the sum over
all particles

1 /1 1 1 1
K Eaverage(t) = > T <2vi(t — 5At)2 +gvilt + 2At)2> , (3.42)

i
where the square is inside the average.

A non-standard variant of velocity Verlet which averages the kinetic energies K E'(t + %At) and
KE(t — %At), exactly like leap-frog, is also now implemented in GROMACS (as .mdp file
option md-vv-avek). Without temperature and pressure coupling, velocity Verlet with half-
step-averaged kinetic energies and leap-frog will be identical up to numerical precision. For

3.4. Molecular Dynamics 29

temperature- and pressure-control schemes, however, velocity Verlet with half-step-averaged ki-
netic energies and leap-frog will be different, as will be discussed in the section in thermostats and
barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step
size; the difference in average kinetic energies using the half-step-averaged kinetic energies (md
and md-vv-avek) will be closer to the kinetic energy obtained in the limit of small step size than
will the full-step kinetic energy (using md-vv). For NVE simulations, this difference is usually not
significant, since the positions and velocities of the particles are still identical; it makes a difference
in the way the the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method,
meaning that it changes less as the timestep gets large, it is also more noisy. The RMS deviation
of the total energy of the system (sum of kinetic plus potential) in the half-step-averaged kinetic
energy case will be higher (about twice as high in most cases) than the full-step kinetic energy.
The drift will still be the same, however, as again, the trajectories are identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temper-
ature control, since the velocities of the particles are adjusted such that kinetic energies of the
simulations, which can be calculated either way, reach the distribution corresponding to the set
temperature. In this case, the three methods will not give identical results.

Because the velocity and position are both defined at the same time ¢ the velocity Verlet integrator
can be used for some methods, especially rigorously correct pressure control methods, that are not
actually possible with leap-frog. The integration itself takes negligibly more time than leap-frog,
but twice as many communication calls are currently required. In most cases, and especially for
large systems where communication speed is important for parallelization and differences between
thermodynamic ensembles vanish in the 1/N limit, and when only NVT ensembles are required,
leap-frog will likely be the preferred integrator. For pressure control simulations where the fine
details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of
thermodynamics correct.

3.4.7 Multiple time stepping

Several other simulation packages uses multiple time stepping for bonds and/or the PME mesh
forces. In GROMACS we have not implemented this (yet), since we use a different philosophy.
Bonds can be constrained (which is also a more sound approximation of a physical quantum
oscillator), which allows the smallest time step to be increased to the larger one. This not only
halves the number of force calculations, but also the update calculations. For even larger time
steps, angle vibrations involving hydrogen atoms can be removed using virtual interaction sites
(see sec. 6.10), which brings the shortest time step up to PME mesh update frequency of a multiple
time stepping scheme.

3.4.8 Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant vol-
ume, constant energy ensemble), most quantities that we wish to calculate are actually from a

30 Chapter 3. Algorithms

constant temperature (NVT) ensemble, also called the canonical ensemble. GROMACS can use
the weak-coupling scheme of Berendsen [26], stochastic randomization through the Andersen
thermostat [27], the extended ensemble Nosé-Hoover scheme [28, 29], or a velocity-rescaling
scheme [30] to simulate constant temperature, with advantages of each of the schemes laid out
below.

There are several other reasons why it might be necessary to control the temperature of the system
(drift during equilibration, drift as a result of force truncation and integration errors, heating due to
external or frictional forces), but this is not entirely correct to do from a thermodynamic standpoint,
and in some cases only masks the symptoms (increase in temperature of the system) rather than the
underlying problem (deviations from correct physics in the dynamics). For larger systems, errors
in ensemble averages and structural properties incurred by using temperature control to remove
slow drifts in temperature appear to be negligible, but no completely comprehensive comparisons
have been carried out, and some caution must be taking in interpreting the results.

When using temperature and/or pressure coupling the total energy is no longer conserved. In-
stead there is a conserved energy quantity the formula of which will depend on the combination or
temperature and pressure coupling algorithm used. For all coupling algorithms, except for Ander-
sen temperature coupling and Parrinello-Rahman pressure coupling combined with shear stress,
the conserved energy quantity is computed and stored in the energy and log file. Note that this
quantity will not be conserved when external forces are applied to the system, such as pulling on
group with a changing distance or an electric field. Furthermore, how well the energy is conserved
depends on the accuracy of all algorithms involved in the simulation. Usually the algorithms that
cause most drift are constraints and the pair-list buffer, depending on the parameters used.

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperature 7y. See ref. [31] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature from 7j is slowly corrected
according to:
dar To—-T
dat 7

(3.43)

which means that a temperature deviation decays exponentially with a time constant 7. This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case
it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one
does not generate a proper canonical ensemble, so rigorously, the sampling will be incorrect. This
error scales with 1/, so for very large systems most ensemble averages will not be affected sig-
nificantly, except for the distribution of the kinetic energy itself. However, fluctuation properties,
such as the heat capacity, will be affected. A similar thermostat which does produce a correct
ensemble is the velocity rescaling thermostat [30] described below.

The heat flow into or out of the system is affected by scaling the velocities of each particle every

3.4. Molecular Dynamics 31

step, or every nc steps, with a time-dependent factor A, given by:

1/2
nTcAt To
1+ -1 (3.44)
{T<) H

A= T

The parameter 77 is close, but not exactly equal, to the time constant 7 of the temperature coupling
(eqn. 3.43):
T = 2Cy 17 /Nark (3.45)

where CYy is the total heat capacity of the system, k is Boltzmann’s constant, and Ny is the
total number of degrees of freedom. The reason that 7 # 7p is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
hence the change in temperature is less than the scaling energy. In practice, the ratio 7 /7 ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term “temperature coupling
time constant,” we mean the parameter 7. Note that in practice the scaling factor X is limited
to the range of 0.8 <= A\ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, A will always be much closer to 1.0.

The thermostat modifies the kinetic energy at each scaling step by:
AE, = (A —1)%E (3.46)

The sum of these changes over the run needs to subtracted from the total energy to obtain the
conserved energy quantity.

Velocity-rescaling temperature coupling

The velocity-rescaling thermostat [30] is essentially a Berendsen thermostat (see above) with an
additional stochastic term that ensures a correct kinetic energy distribution by modifying it accord-
ing to
dt KKy dW
dK = (Kg — K)— +2 0=
() Ny /1T
where K is the kinetic energy, /Ny the number of degrees of freedom and dIW' a Wiener process.
There are no additional parameters, except for a random seed. This thermostat produces a correct
canonical ensemble and still has the advantage of the Berendsen thermostat: first order decay of

temperature deviations and no oscillations.

(3.47)

Andersen thermostat

One simple way to maintain a thermostatted ensemble is to take an NV E integrator and pe-
riodically re-select the velocities of the particles from a Maxwell-Boltzmann distribution. [27]
This can either be done by randomizing all the velocities simultaneously (massive collision) ev-
ery 7r/At steps (andersen-massive), or by randomizing every particle with some small
probability every timestep (andersen), equal to At/7, where in both cases At is the timestep
and 7 is a characteristic coupling time scale. Because of the way constraints operate, all par-
ticles in the same constraint group must be randomized simultaneously. Because of paralleliza-
tion issues, the andersen version cannot currently (5.0) be used in systems with constraints.

32 Chapter 3. Algorithms

andersen-massive can be used regardless of constraints. This thermostat is also currently
only possible with velocity Verlet algorithms, because it operates directly on the velocities at each
timestep.

This algorithm completely avoids some of the ergodicity issues of other thermostatting algorithms,
as energy cannot flow back and forth between energetically decoupled components of the system
as in velocity scaling motions. However, it can slow down the kinetics of system by randomizing
correlated motions of the system, including slowing sampling when 77 is at moderate levels (less
than 10 ps). This algorithm should therefore generally not be used when examining kinetics or
transport properties of the system. [32]

Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once the system has reached equilibrium it might be more important to probe a
correct canonical ensemble. This is unfortunately not the case for the weak-coupling scheme.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé [28] and later modified by Hoover [29]. The system Hamiltonian
is extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameter, .
This friction parameter (or “heat bath” variable) is a fully dynamic quantity with its own momen-
tum (p¢) and equation of motion; the time derivative is calculated from the difference between the
current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in Fig. 3.3 are replaced by:

dQT‘Z' _ FZ' V23 dTZ'

N 3.48
a2 m; Q dt’ (3:48)
where the equation of motion for the heat bath parameter ¢ is:
dpg
— = (T"-1Tp). 3.49
a (0) (3.49)

The reference temperature is denoted 7, while 7' is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constant () (usually called the “mass
parameter” of the reservoir) in combination with the reference temperature. !

The conserved quantity for the Nosé-Hoover equations of motion is not the total energy, but rather

N 2

p; 3
U(ry,re,...,7 —
2 2mi+ (ri,m2 N)+2Q

)

H= + NykTE, (3.50)

where N is the total number of degrees of freedom.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when defining (). To maintain the cou-
pling strength, one would have to change () in proportion to the change in reference temperature.

'Note that some derivations, an alternative notation Ealt = Ve = D¢ /Q is used.

3.4. Molecular Dynamics 33

For this reason, we prefer to let the GROMACS user work instead with the period 71 of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related to)
and Tj via:

T %Tg
4m2
This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar
to the weak-coupling relaxation), and in addition 77 is independent of system size and reference
temperature.

Q= (3.51)

It is however important to keep the difference between the weak-coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly damped exponential relax-
ation, while the Nosé-Hoover approach produces an oscillatory relaxation. The actual time it
takes to relax with Nosé-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time
constant normally should be 4-5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be non-
ergodic, meaning that only a subsection of phase space is ever sampled, even if the simulations
were to run for infinitely long. For this reason, the Nosé-Hoover chain approach was developed,
where each of the Nosé-Hoover thermostats has its own Nosé-Hoover thermostat controlling its
temperature. In the limit of an infinite chain of thermostats, the dynamics are guaranteed to be
ergodic. Using just a few chains can greatly improve the ergodicity, but recent research has shown
that the system will still be nonergodic, and it is still not entirely clear what the practical effect of
this [33]. Currently, the default number of chains is 10, but this can be controlled by the user. In the
case of chains, the equations are modified in the following way to include a chain of thermostatting
particles [34]:

Eri _ Fi pgdri
dt? N my; Ql dt
dp& DPey
— (T =T, — pe, 252
2
dpg; s v Pg;_, Pe;
1=2... — g _ kT _) 41
dt Qi-1 P Qi+1
2
dpEN Pen_y
= —=— — kT (3.52)
dt <QN—1
The conserved qu