{robust-externalize}

Cache anything (TikZ, python...),
in a robust, efficient and pure way.

Léo Colisson Version 1.0

github.com/leo-colisson/robust-externalize

Contents
1 A taste of this library

2 Introduction

2.1 Why do I need to cache (a.k.a. externalize) parts of my document?
2.2 Why not using TikZ’s externalize library?
2.3 FAQ . . . e
Quickstart
3.1 Imstallation e
3.2 Caching a tikz picture L L
3.3 Custom preamble
3.4 Dependencies Lo
3.5 Disabling externalization L oL s
3.6 Feeding data from the main document to the picture
3.7 Feeding data back into the main document
3.8 Fornon-EITEX code e
3.8.1 Pythoncode
3.8.2 Other languages
Documentation
4.1 Howit works L
4.2 Placeholders oL e
4.2.1 Reading a placeholder Lo
4.2.2 List and debug placeholders oL
4.2.3 Setting a value to a placeholder oo
4.3 Cachingacontent
4.3.1 Basics e
4.3.2 Options to configure the template
4.3.3 Options to configure the compilation command
4.3.4 Options to configure the inclusion command
4.3.5 Configuration of thecache 0oL
4.3.6 Customize or disable externalization
4.3.7 Dependencieso e
4.3.8 Pass compiled file to another template 0L
4.4 Default presets
4.4.1 Alllanguages oo
4.4.2 ETEX . . o
4.43 Python
444 Bash e
4.4.5 Verbatim text
4.5 List of special placeholders and presets
4.5.1 Generic placeholders L oL

https://github.com/leo-colisson/robust-externalize

4.5.2 Placeholders related to BXTEX L oo 47

4.5.3 Placeholders related to python Lo 47

4.5.4 Placeholders related tobasho o000 48

4.6 Customize presets and create your own style. 0oL 48
4.7 Operationson thecache e 48
4.7.1 Cleaning thecache L Lo 49

4.7.2 Listing all figuresinuse Lo 49

4.7.3 Manually compiling the figures 49

4.8 Howtodebug e 49

5 TODO and known bugs: 49
6 Acknowledgments 50

WARNING: This library is young and has not been tested extensively (and is an
important rewrite of a previous version). Even if we try to stay backward compatible,
the only guaranteed way to be immune to changes is to copy/paste the library in
your main project folder. Please report any bug to https://github.com/leo-colisson/
robust-externalize, or let us know if it works!

1 A taste of this library

This library allows you to cache any language: not only IXTEX documents and TikZ images, taking
into account depth and overlays:

)) S amaycrlay text
The next picture is cached and you can see that overlay and

depth works.

\robExtConfigure{

tikz/.append style={

add to preamble={\usepackage{pifont}}

}
}
The next picture is cached 7
\begin{tikzpictureC} [baseline=(4.base)]

\node [fill=7ed, rounded corners] (A){My node that respects baseline \ding{164}.};

\node [fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};
\end{tikzpictureC} and you can see that overlay and depth works.

but also arbitrary code (e.g. python). You can also define arbitrary compilation commands, inclu-
sion commands, and presets to fit you need. For instance, you can create a preset to obtain:

The for loop

1| for name in ["Alice", "Bob"]:
2 print (f"Hello {namel}")

Output:

Hello Alice
Hello Bob

\begin{CacheMeCode}{python print code and result, set title={The for loop}}

for name in ["Alice", "Bob"]:
print(£"Hello {namel}")
\end{CacheMeCode}

Actually, we also provide this style by default (and explain how to write it yourself), you just
make sure to load:

https://github.com/leo-colisson/robust-externalize
https://github.com/leo-colisson/robust-externalize

\usepackage{pythonhighlight}
\usepackage{tcolorbox}

To achieve a pleasant and configurable interface, we introduced placeholders, that can be of
independent interest.

2 Introduction

2.1 Why do I need to cache (a.k.a. externalize) parts of my document?

One often wants to cache (i.e. store pre-compiled parts of the document, like figures) operations
that are long to do: For instance, TikZ is great, but TikZ figures often take time to compile
(it can easily take a few seconds per picture). This can become really annoying with documents
containing many pictures, as the compilation can take multiple minutes: for instance my thesis
needed roughly 30mn to compile as it contains many tiny figures, and LaTeX needs to compile
the document multiple times before converging to the final result. But even on much smaller
documents you can easily reach a few minutes of compilation, which is not only high to get a
useful feedback in real time, but worse, when using online WTEX providers (e.g. overleaf), this can
be a real pain as you are unable to process your document due to timeouts.

Similarly, you might want to cache the result of some codes, for instance a text or an image
generated via python and matplotlib, without manually compiling them externally.

2.2 Why not using TikZ’s externalize library?

TikZ has an externalize library to pre-compile these images on the first run. Even if this library
is quite simple to use, it has multiple issues:

e If you add a picture before existing pre-compiled pictures, the pictures that are placed after
will be recompiled from scratch. This can be mitigated by manually adding a different prefix
to each picture, but it is highly not practical to use.

e To compile each picture, TikZ’s externalize library reads the document’s preamble and needs
to process (quickly) the whole document. In large documents (or in documents relying on
many packages), this can result in a significant loading time, sometimes much bigger than the
time to compile the document without the externalize library: for instance, if the document
takes 10 seconds to be processed, and if you have 200 pictures that take 1s each to be
compiled, the first compilation with the TikZ’s externalize library will take roughly half an
hour instead of 3mn without the library. And if you add a single picture at the beginning of
the document. .. you need to restart everything from scratch. For these reasons, I was not
even able to compile my thesis with TikZ’s external library in a reasonable time.

e If two pictures share the same code, it will be compiled twice

e Little purity is enforced: if a macro changes before a pre-compiled picture that uses this
macro, the figure will not be updated. This can result in different documents depending on
whether the cache is cleared or not.

e As far as I know, it is made for TikZ picture mostly, and is not really made for inserting
other stuff, like matplotlib images generated from python etc...

e According to some maintainers of TikZ, “the code of the externalization library is mostly
unreadable gibberish!”, and therefore most of the above issues are unlikely to be solved in a
foreseable future.

Thttps://github.com/pgf-tikz/pgf/issues/758

https://github.com/pgf-tikz/pgf/issues/758
https://github.com/pgf-tikz/pgf/issues/758
https://github.com/pgf-tikz/pgf/issues/758

2.3 FAQ

What is supported? You can cache most things, including tikz pictures, (including ones with
overlays (but not with remember picture), with depth etc.), python code etc. We tried to make
the library as customizable as possible to be useful in most scenarios. You can also feed data
back to the main document (say that you want to compute a value that takes time to compute, or
compute the number of pages of the produced document in order to increase the number of pages
accordingly. . .).

What is not supported? We do not yet support remember picture, and you can’t use (yet)
cross-references inside your images (at least not without further hacks). Note that this library is
quite young, so expect untested things.

What OS are supported? I tested the library mostly on Linux systems, but the library should
work on all OS. Please let me know if it fails for you.

Do I need to compile using -shell-escape? Since we need to compile the images via an
external command, the simpler option is to add the argument -shell-escape to let the library
run the compilation command automatically (this is also the case of TikZ’s externalize library).
However, people worried by security issues of —~shell-escape (that allows arbitrary code execution
if you don’t trust the IXTEX code) might be interested by these facts:

e If images are all already cached, you don’t need to enable -shell-escape (this might be
interesting e.g. to send the files a pre-cached document to the arxiv or to a publisher: just
make sure to include the cache folder).

e You can choose to display a dummy content until you choose to compile them.

e You can compile manually the images: all the commands that are left to be executed are
listed in robExt-compile-missing-figures.sh and you can just run them, either with bash
robExt-compile-missing-figures.sh or by typing them manually (most of the time it’s
only a matter of running pdflatex somefile.tex).

Is it working on overleaf? Yes: overleaf automatically compiles documents with -~shell-escape,
so nothing special needs to be done there (of course, if you use this library to run some code, the
programming language might not be available, but I heard that python is installed on overleaf
servers for instance, even if this needs to be doubled checked). If the first compilation of the
document to cache images times out, you can just repeat this operation multiple times until all
images are cached.

Do you have some benchmarks? On an early draft of a small paper containing 76 small
tikz-cd based pictures (from my other zx-calculus library), we measured:

e 35 seconds for a normal compilation without externalization
e 75 seconds for the first compilation with this library
e 2.4 seconds for the next runs

So during the first compilation, we lost a x2 factor (roughly an additional time of .5 seconds per
picture coming from the time to start I¥TEX, it seems like on average a picture takes .5 seconds
to be built in my benchmark), but then we have a speedup of x15 (2.43s instead of 34.63s) for
all subsequent runs. And I expect this to be even higher with more pictures and more complex
documents.

Can I use version-control to keep the cached files in my repository? Sure, each cached
figure is stored in a few files (typically one pdf and one IWTEX file, plus the source) having the same
prefix (the hash), avoiding collision between runs. Just commit these files and you are good to go.

Can you deal with baseline position ? Yes, the depth of the box is automatically computed
and used to include the figure by default.

How is purity enforced? Purity is the property that if you remove the cached files and re-
compile your document, you should end-up with the same output. To enforce purity, we compute
the hash of the final program, including the compilation command and the dependency files used
for instance in \input{include.tex} (unless you prefer not to, for instance to keep parts of the
process impure for efficiency reasons), and put the code in a file named based on this hash. Then
we compile it if it has not been used before, and include the output. Changing a single character
in the file, the tracked dependencies, or the compilation command will lead to a new hash, and
therefore to a new generated picture.

What if I don’t want purity for all files? If you do not want your files to be recompiled if
you modify a given file, then just do not add this file to the list of dependencies.

Can I extend it easily? We tried to take a quite modular approach in order to allow easy
extensions. Internally, to support a new cache scheme, we only expect a string containing the
program (possibly produced using a template), a list of dependencies, a command to compile this
program (e.g. producing a pdf and possibly a tex file with the properties (depth...) of the pdf),
and a command to load the result of the compilation into the final document (called after loading
the previously mentioned optional tex file). Thanks to pgfkeys, it is then possible to create simple
pre-made settings to automatically apply when needed.

How does it compare with https://github.com/sasozivanovic/memoize? I recently be-

came aware of the great https://github.com/sasozivanovic/memoize. While me aim to solve

a similar goal, our approaches are quite different. While we focus on purity, and therefore create a

different file for each picture, the above project puts all pictures in a single file and compile them

all at once to avoid losing time to run the latex command for each picture (this mostly makes a

difference for the first compilation). Our understanding of the main differences is the following:
Pros of https://github.com/sasozivanovic/memoize:

e The above library is likely to be quicker on the first run since it packs everything in a single
file (so you save the time to run latex for each picture). On the other hand, we can load in
the preamble exactly what is needed for the picture (we do not load all the preamble of the
main file), so our startup time is not huge (it adds .5s per picture in my tests when using the
zx-calculus library), and you can still commit the cached file to help with recompiling the
document elsewhere.

e It seems to be easier to setup as they do not need to specify the preamble of the file to
compile (the preamble of the main file is used), and tikz picture are automatically memoized
(we provide \robExtExternalizeAllTikzpictures for that, but you still need to specify
the preamble once).

Cons of https://github.com/sasozivanovic/memoize:

e The purity is not enforced so strongly since all images are in the same file. Notably, the
hash only depends on the picture, but not on its context. So for instance if you define
\def\mycolor{bluel} before the picture, and use \mycolor inside the picture, if you change
later the color to, say, \def\mycolor{red}, the picture will not be recompiled (so cleaning
the cache and recompiling would produce a different result). In our case, the purity is always
strictly enforced (unless you choose not to).

e As a result, the above library has poor support for contexts (in our case, you can easily,
for instance, make a picture depend on the current page, and recompile the picture only if
the current page changes: you can also do it the other way, and change some counters, say,
depending on the cached file).

e The above library only focuses on ITEX while our library works for any language

https://github.com/sasozivanovic/memoize
https://github.com/sasozivanovic/memoize
https://github.com/sasozivanovic/memoize
https://github.com/sasozivanovic/memoize

e The above library can only produce pdf formats, while we can generate any format (text,
tex, jpg... and even videos that I include in my beamer presentation).

e We have an arguably more complete documentation.

Note that remember picture is not working in both libraries.

3 Quickstart

3.1 Installation

To install the library, just copy the robust-externalize.sty file into the root of the project.
Then, load the library using:

\usepackage{robust-externalize}

3.2 Caching a tikz picture
If you only care about TikZ’s picture, you have 3 options:

1. Call once \robExtExternalizeAllTikzpictures that will redefine tikzpicture to use our
library (if you use this solution, make sure to read how to disable externalization (sec-
tion 4.3.6) as we do not support for instance remember picture). Then, configure the
default preamble for cached files as explained below.

2. Use tikzpictureC instead of tikzpicture (this is mostly done to easily convert existing
code to this library, but works only for tikz pictures).

3. Use the more general CacheMe environment, that can cache TikZ, IWTEX, python, and much
more.

These 3 options are illustrated below (note that the newly defined tikzpicture and
tikzpictureC accept a second optional argument that contains the options to pass to CacheMe
after loading the tikz preset):

Option 1:

I am a cached picture: | Hello World! |.

4% We override the default tikzpicture environment

A% to externalize all pictures

A% Warning: it will cause troubles with pictures relying on [remember pictures/
\robExtExternalizeAllTikzpictures

I am a cached picture: \begin{tikzpicture}[baseline=(4.base)]
\node [draw,rounded corners,fill=pink/60] (A){Hello World!};
\end{tikzpicture}.

Option 2:
I am a cached picture: |Hello World! .

I am a cached picture: \begin{tikzpictureC}[baseline=(4.base)]
\node [draw,rounded corners,fill=pink/60] (A){Hello World!};
\end{tikzpictureC}.

Option 3:

I am a cached picture: | Hello World! |.

I am a cached picture: \begin{CacheMe}{tikz}[baseline=(4.base)]
\node [draw,rounded corners,fill=pink/60] (A){Hello World!};
\end{CacheMe} .

Since CacheMe is more general as it applies also to non-tikz pictures (just replace tikz with
the style of your choice), we will mostly use this syntax from now.

3.3 Custom preamble

Note that the pictures are compiled in a separate document, with a different preamble and class
(we use the standalone class). This is interesting to reduce the compilation time of each picture
(loading a large preamble is really time consuming) and to avoid unnecessary recompilation (do
you want to recompile all your pictures when you add a single new macro?) without sacrificing
the purity. But of course, you need to provide the preamble of the pictures. The easiest way is
probably to modify the tikz preset (you can also modify the latex preset if you want the change
to apply to all BTEX documents):

See, tikz’s style now packs the shadows library by default: @

\robExtConfigure{
tikz/.append style={
add to preamble={\usetikzlibrary{shadowsl}},
ks
}

See, tikz’s style now packs the |shadows| library by default:
\begin{CacheMe}{tikz} [even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

You can also choose to overwrite it for a single picture (or even a block of picture if you run
the \robExtConfigure and CacheMe inside a group { ... }):

See, you can add something to the preamble of a single picture: @

See, you can add something to the preamble of a single picture: /
\begin{CacheMe}{tikz, add to preamble={\usetikzlibrary{shadows}}}[even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

Note that if you use the tikzpictureC or tikzpicture syntax, you want to add the options
after the tikz options (leave an empty bracket if there is none):

See, you can add something to the preamble of a single picture: @

See, you can add something to the preamble of a single picture: /
\begin{tikzpictureC}[even odd rule] [add to preamble={\usetikzlibrary{shadows}}]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{tikzpictureC}

3.4 Dependencies

It might be handy to have a file that is loaded in both the main document and in the cached
pictures. For instance, if you have a file common_inputs.tex that you want to input in both the
main file and in the cached files, that contains, say:

\def\myValueDefinedInCommonInputs{42}

then you can add it as a dependency this way (here we use the latex preset that does not wrap the
code inside a tikzpicture only to illustrate that we can also cache things that is not generated
by tikz):

The answer is 42.

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__/common_inputs.tex}}}
The answer is \myValueDefinedInCommonInputs.
\end{CacheMe}

Note that the placeholder __ROBEXT_WAY_BACK__ contains the path from the cache folder (con-
taining the .tex that will be cached) to the root folder, and will be replaced when creating the
file. This way, you can easily input files contained in the root folder. You can also create your own
placeholders, read more below.

You can note that we used add dependencies={common_inputs.tex}: this allows us to
recompile the files if common_inputs.tex changes. If you do not want this behavior (e.g.
common_inputs.tex changes too often and you do not want to recompile everything at every
change), you can remove this line, but beware: if you do a breaking changes in common_inputs.tex
(e.g. redefine 42 to 43), then the previously cached picture will not be recompiled! (So you will
still read 42 instead of 43.)

3.5 Disabling externalization

You can use disable externalization to disable externalization (which is particularly practical
if you set \robExtExternalizeAllTikzpictures). You can configure the exact command run in
that case using command if no alization/.code={...}, see section 4.3.6 for details.

% In theory all pictures should be externalized (so remember picture should fail)
\tikz[remember picture,baseline=(pointtomel.base)]

\node [rounded corners, fill=orangel (pointtomel){Point to me if you can};\\
\robExtExternalizeAllTikzpictures
/% But we can disable it temporarily
\begin{tikzpicture} [remember picture] [disable externalization]

\node [rounded corners, fill=red] (A){This figure is not externalized.

This way, it can use remember picture.};

\draw[->,overlay] (A) tol[bend right] (pointtomel);

\end{tikzpicture}\\

% You can also disable it globally/in a group:
{

\robExtConfigure{disable externalization}

\begin{tikzpicture} [remember picturel
\node [rounded corners, fill=red] (A){This figure is not externalized.
This way, it can use remember picture.};
\draw[->,overlay] (A.west) to[bend left] (pointtomel);
\end{tikzpicture}\\

\begin{tikzpicture} [remember picture]
\node [rounded corners, fill=red] (A){This figure is not externalized.
This way, it can use remember picture.};
\draw[->,overlay] (A.east) tol[bend right] (pointtomel);
\end{tikzpicture}\\
}

\begin{tikzpicture}
\node [rounded corners, fill=green] (A){This figure is externalized, but cannot use remember picture.};
\end{tikzpicture}

3.6 Feeding data from the main document to the picture

You can feed data from the main document to the cached file using placeholders, since
set placeholder eval={__foo__}{\bar} will evaluate \bar and put the result in __foo__. For
instance, if the picture depends on the current page, you can do:

\begin{tikzpictureC}[] [set placeholder eval={__thepage__}{\thepage}]
\node [rounded corners, fill=red]{The current page is __thepage__.};
\end{tikzpictureC}

3.7 Feeding data back into the main document

For more advanced usage, you might want to compute a data and cache the result in a macro
that you could use later. This is possible if you write into the file \jobname-out.tex during the
compilation of the cached file (by default, we already open \writeRobExt to write to this file).
This file will be automatically loaded before loading the pdf (but you can customize all these
operations, for instance if you do not want to load the pdf at all; the only requirement is that you
should generate a .pdf file to specify that the compilation is finished).

For instance:

We computed the cached value 1.61803.

\begin{CacheMe}{latex, add to preamble={\usepackage{tikz}}, do not include pdf}
We compute this data that is long to compute:
\pgfmathparse{ (1 + sqrt(5))/2}/ result is stored in \pgfmathresult
% We write the result to the -out file (\string\foo writes \foo to the file without evaluating tt,
% so this will write "\gdef\myLongResult{1.61803}"):
% Note that CacheMe is evaluated in a group, so you want to use \gdef to define it
% outside of the group
\immediate\write\writeRobExt{/
\string\gdef\string\myLongResult{\pgfmathresult}/
}
\end{CacheMe}

We computed the cached value \myLongResult.

3.8 For non-BTEX code

Due to the way IATEX works, non-I&TEX code can’t be reliably read inside macros and some envi-
ronments that parse their body (e.g. align) as some characters are removed (e.g. percent symbols
are comments and are removed). For this reason, we sometimes need to separate the time where we
define the code and where we insert it (this is done using placeholders, see PlaceholderFromCode),
and we need to introduce new environments to populate the template (see section 4.5 for more
details, to generate them from filename, to get the path of a file etc).

The environment CacheMeCode can be used for this purpose.

3.8.1 Python code

Generate an image For instance, you can use the default python template to generate an image
with python. The following code:

\begin{CacheMeCode}{python, set includegraphics options={width=.8\linewidth}}
import matplotlib.pyplot as plt

year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)
plt.savefig("__ROBEXT_OUTPUT_PDF__")

\end{CacheMeCode}

will produce the image visible in fig. 1. Importantly: you do not want to indent the
content of CacheMeCode, or the space will also appear in the final code.

Compute a value We also provide by default a number of helper functions. For instance,
write_to_out (text) will write text to the *-out.tex file that is loaded automatically by ETEX.
This is useful to compute data that is not an image (note that r"some string" does not consider
backslash as an escape string, which is handy to write WTEX code in python):

For instance:

— The cosinus of 1 is 0.5403023058681398.

\begin{CacheMeCode}{python, do not include pdf}

import math

write_to_out (r"\gdef\cosComputedInPython{" + str(math.cos(1)) + r"}")
\end{CacheMeCode}

\rightarrow The cosinus of 1 is \cosComputedInPython.

Improve an existing preset If you often use the same code (e.g. load matplotlib, save the file
etc), you can directly modify the __ROBEXT_MAIN_CONTENT__ placeholder to add the redundant
information (or create a new template from scratch, see below), as this placeholder contains the code
typed by the user (this is true for all presets, as CacheMe* is in charge of setting this placeholder):

10

Number of futurestud.io Tutorials

120 A

1204

=

o

S
!

@
S
!

o
o
!

N
o
!

%)
100 -
S
=
o
T 80
a
S
2
=
S 60 -
@
Q
€
=]
=2

40 4

2014 2015 2016 2017 2018
Year
Figure 1: Image generated with python.
Zdl4 20‘15 20‘16 20‘17 20‘18 2619

Year

11

2019

A% Create your style:
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__}
import matplotlib.pyplot as plt

import sys

\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_AFTER__}
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\robExtConfigure{
my matplotlib/.style={
python,
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_AFTER__},
1,
}

A% Use your style:

4% See, you don’t need to load matplotlib or save the file:

\begin{CacheMeCode}{my matplotlib, set includegraphics options={width=.5\linewidth}}
year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)

plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)

\end{CacheMeCode}

Custom parameters and placeholders Let us say that you would like to define a default font
size for your figure, but that you would like to allow the user to change this font size. Then, you
should create a new placeholder with your default value, and use set placeholder to change this
value later (see also the documentation of CacheMeCode to see how to create a new command to
avoid typing set placeholder):

12

Default font size:

120

100 -

804

601

Number of futurestud.io Tutorials

40

2014 2015 2016 2017 2018 2019
Year

With font size 16:

= =
2] oo o N
o o o o

S
o

Number of futurestud.io Tutorials

2014 2015 2016 2017 2018 2019
Year

13

A% Create your style:

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__}
import matplotlib as mpl

import matplotlib.pyplot as plt

import sys

mpl.rcParams[’font.size’] = __MY_MATPLOTLIB_FONT_SIZE__
\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_AFTER__}
plt.savefig("__RUBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\robExtConfigure{
my matplotlib/.style={
python,
% We create a new placeholder (it is simple enough that you don’t need to use PlaceholderFromCode)
set placeholder={__MY_MATPLOTLIB_FONT_SIZE__}{12},
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_AFTER__},
1,
X

A% Use your style:

4% See, you don’t meed to load matplotlib or save the file:

Default font size: \begin{CacheMeCode}{my matplotlib, set includegraphics options={width=.5\linewidth}}
year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)

plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)

\end{CacheMeCode}

With font size 16:
\begin{CacheMeCode}{my matplotlib,
set includegraphics options={width=.5\linewidth},
set placeholder={__MY_MATPLOTLIB_FONT_SIZE__}{16}}
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel(’Year’)
plt.ylabel (’Number of futurestud.io Tutorials’)
\end{CacheMeCode}

Note that if you manage to move all the code in the template and that the user can configure
everything using the options and an empty content, you can use CacheMeNoContent that takes no
argument and that consider its body as the options.

Custom include command There may be some cases where you do not want to include a
picture. We already saw the option do not include pdf if you do not want to include anything.
But you can customize the include function, using notably:
custom include command={your include command}

For instance, let us say that you would like to display both the source code used to obtain a
given code, together with the output of this code. Then, you can write this style:

14

{
A% Create your style:
\begin{PlaceholderFromCode}{__MY_PRINT_BOTH_TEMPLATE_BEFORE__}
File where print("bla") should be redirected
get_filename_from_extension("-foo.txt") will give you the path of the file
in the cache that looks like robExt-somehash-foo.txt
print_file = open(get_filename_from_extension("-print.txt"), "w")
sys.stdout = print_file
This code will read the current code, and extract the lines between
that starts with "### CODESTARTSHERE" and "### CODESTOPSHERE", and will write
it into the *-code.text (we do not want to print all these functions in
the final code)
with open(get_filename_from_extension("-code.txt"), "w") as f:
The current script has extension .tex
with open(get_current_script(), "r") as script:
should_write = False
for line in script:
if line.startswith("### CODESTARTSHERE"):
should_write = True
elif line.startswith("### CODESTOPSHERE") :
should_write = False
elif "HIDEME" in line:
pass
else:
if should_write:
f.write(line)
CODESTARTSHERE
\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_PRINT_BOTH_TEMPLATE_AFTER__}
CODESTOPSHERE

print_file.close()

\end{PlaceholderFromCode}

\robExtConfigure{
my python print both/.style={
python,
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_PRINT_BOTH_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_PRINT_BOTH_TEMPLATE_AFTER__},
set title/.style={
set placeholder={__MY_TITLE__}{##1},
T
set title={Example},
custom include command={
% Useful to replace __MY_TITLE__:
\evalPlaceholder{
% \wverbatiminput{\robExtAddCachePathAndName{\robExtFinalHash-code. tzt}}
\begin{tcolorbox}[colback=red!5/white,colframe=red!75!black,title=__MY_TITLE__]
\1lstinputlisting[frame=single,
breakindent=.5\teztwidth,
frame=single,
breaklines=true,
style=mypython] {\robExtAddCachePathAndName{\robExtFinalHash-code.txt}}
Output:
\verbatiminput{\robExtAddCachePathAndName{\robExtFinalHash-print.txt}}
\end{tcolorbox}

3,
1,
}

Once the style is defined (actually we already defined in the library under the name
python print code and result), you can just write:

\begin{CacheMeCode}{my python print both, set title={The for loopl}}

for name in ["Alice", "Bob"]:
print (f"Hello {name}")
\end{CacheMeCode}
to get:

15

The for loop

1| for name in ["Alice", "Bob"]:
2 print (f"Hello {name}")

Output:

Hello Alice
Hello Bob

3.8.2 Other languages

We also provide support for other languages, notably bash, but it is relatively easy to add basic
support for any new language. You only need to configure set compilation command to your
command, set template to the file to compile (__ROBEXT_MAIN_CONTENT__ contains the code
typed by the user), and possibly a custom include command with custom include command if you
do not want to do \includegraphics on the final pdf. For instance, to define a basic template for
bash, you just need to use:

Linux 5.15.90 #1-Nix0S SMP Tue Jan 24 06:22:49 UTC 2023

% Create your style
\begin{PlaceholderFromCode}{__MY_BASH_TEMPLATE__}

Quit if there is an error

set -e

__ROBEXT_MAIN_CONTENT__

Create the pdf file to certify that no compilation error occured
touch "__ROBEXT_OUTPUT_PDF__"

\end{PlaceholderFromCode}

\robExtConfigure{
my bash/.style={
set compilation command={bash "__ROBEXT_SOURCE_FILE__"},
set template={__MY_BASH_TEMPLATE__},
Wil Version 1:
/% verbatim output,
Wi Version 2:
custom include command={/
\evalPlaceholder{/
\verbatiminput{__ROBEXT_CACHE_FOLDER
Y

ROBEXT_OUTPUT_PREFIX__-out.txtl}/

e
7 Ensure that the code does nmot break when exzternalization is disabled
print verbatim if no externalization,

}
}

% Use your style

\begin{CacheMeCode}{my bash}

Write the system conf to a file *-out.txt
uname -srv > "__ROBEXT_OUTPUT_PREFIX__-out.txt"
\end{CacheMeCode}

Code inside a macro Due to fundamental IXTEX restrictions, it is impossible to use
CacheMeCode inside a macro or some environments as ITEX will strip all lines containing a per-
cent character for instance. The solution here is to define our main content before, and then set it
using set main content (that simply sets __ROBEXT_MAIN_CONTENT__). In this example, we also
show how CacheMeNoContent can be used when their is no content (the arguments to CacheMe are
directly given in the body of CacheMeNoContent):

16

120 A

100 A

80 -

60 -

Number of futurestud.io Tutorials

40

2014 2015 2016 2017 2018 2019
Year

\begin{PlaceholderFromCode}{__TMP_MAIN_CONTENT__}

import matplotlib.pyplot as plt

year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\fbox{\begin{CacheMeNoContent}
python,
set includegraphics options={width=.8\linewidth},

set main content={__TMP_MAIN_CONTENT__},
\end{CacheMeNoContent}}

4 Documentation

4.1 How it works

This library must be able to generate 3 elements for any cached content:

e a source file, that will be compiled, and is obtained by expanding the placeholder
__ROBEXT_TEMPLATE__ (see section 4.5),

e a compilation command obtained by expanding the placeholder __ROBEXT_COMPILATION_COMMAND__,

e a dependency file, that contains the hash of all the dependencies (see section 3.4 for details)
and the compilation command,

e an inclusion command (this one is not used during the caching process, it is only used
when including the compiled document in the main document), that you can set using
custom include command={your command}.

The hash of all these elements is computed in order to obtain a reference hash, denoted
somehash that looks like a unique random value (note that __ROBEXT_OUTPUT_PDF__ and alike

17

are expanded after knowing the hash since they depend on the final hash value). This hash
somehash will change whenever a dependency changes, or if the compilation command changes,
ensuring purity. Then, the dependency file and the source file are written in the cache, by default in
robustExternalize/robExt-somehash.tex and robustExternalize/robExt-somehash.deps. Then,
the compilation command will be run from the cache folder. At the end, by default, we check if
a file robustExternalize/robExt-somehash.pdf exists: if not we abort, otherwise we \input
the file robustExternalize/robExt-somehash-out.tex and we run the include command (that
includes the pdf by default). As we saw earlier, this command can be customized to use other
files. Importantly, all the files created during the compilation must be prefixed by
robExt-somehash, which can be obtained at runtime using __ROBEXT_OUTPUT_PREFIX__. This
way, we can easily clean the cache while ensuring maximum purity.

In the following, we will denote by *-foo.bar the file in:
robustExternalize/robExt-somehash-foo.bar.

Note also that we usually define two names for each function, one normal and one prefixed with
robExt (or RobExt) for environments. In this documentation, we only write the first form, but the
second form is kept in case a conflicting package redefines some functions.

4.2 Placeholders

Placeholders are the main concept allowing this library to generate the content of a source file
based on a template (a template will itself be a placeholder containing other placeholders). A
placeholder is a special strings like __COLOR_IMAGE__ inserted for instance in a string, that will be
given a value later. This value will be used to replace (recursively) the placeholder in the template.
For instance, if a placeholder __LIKES__ contains I like __FRUIT__ and __VEGETABLE__, if the
placeholder __FRUIT__ contains oranges and if the placeholder __VEGETABLE__ contains salad,
then evaluating __LIKES__ will output I like oranges and salad.

Note that the usage of underscore in only a convention, as any name can be used for
the placeholder. There is however one rule to follow: the name of a placeholder should be
made to avoid ambiguities when replacing the string, notably its name should not contain the
name of another placeholder. For instance, if we define a placeholder called NAME containing
Foo and a placeholder named FULL_NAME containing Foo Bar, then when evaluating the string
My name is FULL_NAME, we have no way to know if the user wants to get My name is FULL_Foo
or My name is Foo Bar. For this reason, we advice users to start and end their placeholder
names using two underscores __, while using only upper case letters and single underscore _
inside the placeholder name (this also improves readability). If you are worried about ambiguities
like __PLACEHOLDER1__PLACEHOLDER2__, you can also use different separators for the beginning

but beware that [requires brackets around when used in pgf

and the end like __PLACEHOLDER1

-

styles.

Placeholders are local variables (internally just some IXTEX 3 strings). You can therefore define
a placeholder in a local group surrounded by brackets { ... } if you want it to have a reduced
scope.

4.2.1 Reading a placeholder

\getPlaceholder [(new placeholder name)l{(name placeholder or string)}
\getPlaceholderInResult [(new placeholder name)l{{name placeholder or string)}

Get the value of a placeholder after replacing (recursively) all the inner placeholders.
\getPlaceholderInResult puts the resulting string in a ITEX 3 string \1_robExt_result_str
and in \robExtResult, while \getPlaceholder directly outputs this string. You can also put
inside the argument any arbitrary string, allowing you, for instance, to concatenate multiple
placeholders, copy a placeholder etc. Note that you will get a string, but this string will
not be evaluated by BTEX (see \evalPlaceholder for that), for instance math will not be
interpreted:

18

The placeholder evaluates to:

Hello Alice the great, I am a template $\delta _n$.

Combining placeholders produces:

In ‘‘Hello Alice the great, I am a template $\delta _n$.’’, the name is Alice
the great.

\placeholderFromContent{__MY_PLACEHOLDER__}{Hello __NAME
\placeholderFromContent{__NAME__}{Alice __NICKNAME__}
\placeholderFromContent{__NICKNAME__}{the great}

The placeholder evaluates to:\\
\texttt{\getPlaceholder{__MY_PLACEHOLDER__}}\\

Combining placeholders produces:\\
\texttt{\getPlaceholder{In ¢‘__MY_PLACEHOLDER__’’, the name is __NAME__.}}

I am a template δ_n.}

==

You can also specify the optional argument in order to additionally define a new placeholder
containing the resulting string (but you might prefer to use its alias \setPlaceholderRec
described below):

List of placeholders:
- Placeholder called __NEW_PLACEHOLDER__ contains:

In ‘‘Hello Alice the great, I am a template $\delta _n$.’’, the name is
Alice the great.

- Placeholder called __NICKNAME__ contains:

the great

- Placeholder called __NAME__ contains:

Alice __NICKNAME__

- Placeholder called __MY_PLACEHOLDER__ contains:
Hello __NAME__, I am a template $\delta _n$.

\placeholderFromContent{__MY_PLACEHOLDER__}{Hello __NAME
\placeholderFromContent{__NAME__}{Alice __NICKNAME__}
\placeholderFromContent{__NICKNAME__}{the great}
\getPlaceholderInResult[__NEW_PLACEHOLDER__]{In ¢‘__MY_PLACEHOLDER__’’, the name is __NAME__.}
\printAllPlaceholdersExceptDefaults

I am a template δ_n.}

==

\evalPlaceholder{(name placeholder or string)}

Evaluate the value of a placeholder after replacing (recursively) all the inner placeholders.
You can also put inside any arbitrary string.

The placeholder evaluates to:

Hello Alice the great, I am a template J,,.

Combining placeholders produces:

In “Hello Alice the great, I am a template §,,.”, the name is Alice the great.

\placeholderFromContent{__MY_PLACEHOLDER__}{Hello __NAME
\placeholderFromContent{__NAME__}{Alice __NICKNAME__}
\placeholderFromContent{__NICKNAME__}{the great}

% The placeholder evaluates to \texttt{\getPlaceholder{__MY_PLACEHOLDER__}}.
The placeholder evaluates to:\\

\evalPlaceholder{__MY_PLACEHOLDER__}\\

Combining placeholders produces:\\

\evalPlaceholder{In ‘__MY_PLACEHOLDER__’’, the name is __NAME__.}

I am a template δ_n.}

==

4.2.2 List and debug placeholders

It can sometimes be handy to list all placeholders, print their contents etc. We list here commands
that are mostly useful for debugging purposes.

19

\printAllPlaceholdersExceptDefaults™

Prints the verbatim content of all defined placeholders (without performing any replacement
of inner placeholders), except for the placeholders that are defined by default in this library
(that we identify as they start with __ROBEXT_). The stared version does print the name of
the placeholder defined in this library, but not their definition. This is mostly for debugging
purposes.

List of placeholders:
- Placeholder called __NAME__ contains:

Alice
- Placeholder called __LIKES__ contains:
Hello __NAME__ I am a really basic template $\delta _n$.

\placeholderFromContent{__LIKES__}{Hello
\placeholderFromContent{__NAME__}{Alice}
\printAllPlaceholdersExceptDefaults

_NAME__ I am a really basic template δ_n.}

Compare with:

20

List of placeholders:
- Placeholder called __NAME__ contains:

Alice
- Placeholder called __LIKES__ contains:
Hello __NAME__ I am a really basic template $\delta _n$.

- Placeholder called __ROBEXT_BASH_SHELL__ defined by default (we hide the definition to
save space)

- Placeholder called __ROBEXT_BASH_TEMPLATE__ defined by default (we hide the definition
to save space)

- Placeholder called __ROBEXT_PYTHON_LSTINPUT_STYLE__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_PYTHON_RESULT_MESSAGE__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_PYTHON_CODE_MESSAGE__ defined by default (we hide the def-
inition to save space)

- Placeholder called __ROBEXT_PYTHON_TCOLORBOX_PROPS__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_AFTER__ defined by
default (we hide the definition to save space)

- Placeholder called __ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_BEFORE__ defined by
default (we hide the definition to save space)

- Placeholder called __ROBEXT_PYTHON_EXEC__ defined by default (we hide the definition to
save space)

- Placeholder called __ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__ defined by default (we
hide the definition to save space)

- Placeholder called __ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__ defined by default (we
hide the definition to save space)

- Placeholder called __ROBEXT_PYTHON_IMPORT__ defined by default (we hide the definition
to save space)

- Placeholder called __ROBEXT_PYTHON__ defined by default (we hide the definition to save
space)

- Placeholder called __ROBEXT_LATEX_ENGINE__ defined by default (we hide the definition to
save space)

- Placeholder called __ROBEXT_COMPILATION_COMMAND_OPTIONS__ defined by default (we
hide the definition to save space)

- Placeholder called __ROBEXT_COMPILATION_COMMAND_LATEX__ defined by default (we hide
the definition to save space)

- Placeholder called __ROBEXT_WRITE_DEPTH_TO_OUT_FILE__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_CREATE_OUT_FILE__ defined by default (we hide the defini-
tion to save space)

- Placeholder called __ROBEXT_MAIN_CONTENT_WRAPPED__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_LATEX__ defined by default (we hide the definition to save
space)

- Placeholder called __ROBEXT_LATEX_TRIM_LENGTH__ defined by default (we hide the defi-
nition to save space)

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ defined by default (we hide the
definition to save space)

- Placeholder called __ROBEXT_PREAMBLE__ defined by default (we hide the definition to save
space)

- Placeholder called __ROBEXT_DOCUMENT_CLASS__ defined by default (we hide the definition
to save space)

- Placeholder called __ROBEXT_LATEX_OPTIONS__ defined by default (we hide the definition
to save space)

- Placeholder called __ROBEXT_VERBATIM_CAMMAND__ defined by default (we hide the defini-
tion to save space)

\placeholderFromContent{__LIKES__}{Hello
\placeholderFromContent{__NAME__}{Alice}
\printAllPlaceholdersExceptDefaults*

_NAME__ I am a really basic template δ_n.}

\printAllPlaceholders

Prints the verbatim content of all defined placeholders (without performing any replacement
of inner placeholders), including the placeholders that are defined by default in this library.
This is mostly for debugging purposes. Here is the result of \printAl1Placeholders

List of placeholders:
- Placeholder called __ROBEXT_BASH_SHELL__ contains:

bash

- Placeholder called __ROBEXT_BASH_TEMPLATE__ contains:

Quit if there is an error

set -e

outputTxt="__ROBEXT_OUTPUT_PREFIX__-out.txt"
outputTex="__ROBEXT_OUTPUT_PREFIX__-out.tex"
outputPdf="__ROBEXT_OUTPUT_PDF__"

__ROBEXT_MAIN_CONTENT__

Create the pdf file to certify that no compilation error occured
touch "${outputPdf}"

- Placeholder called __ROBEXT_PYTHON_LSTINPUT_STYLE__ contains:

frame=single, breakindent=.5\textwidth , frame=single, breaklines=true,
style=mypython

- Placeholder called __ROBEXT_PYTHON_RESULT_MESSAGE__ contains:
Output:
- Placeholder called __ROBEXT_PYTHON_CODE_MESSAGE__ contains:

- Placeholder called __ROBEXT_PYTHON_TCOLORBOX_PROPS__ contains:
colback=red!5!white,colframe=red!75!black

- Placeholder called __ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_AFTER__ contains:
CODESTOPSHERE

print_file.close()

- Placeholder called __ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_BEFORE__ contains:
File where print("bla") should be redirected

get_filename_from_extension("-foo.txt") will give you the path of the file
in the cache that looks like robExt-somehash-foo.txt

print_file = open(get_filename_from_extension("-print.txt"), "w")
sys.stdout = print_file

This code will read the current code, and extract the lines between

that starts with "### CODESTARTSHERE" and "### CODESTOPSHERE", and will
write

it into the *-code.text (we do not want to print all these functions in
the final code)
with open(get_filename_from_extension("-code.txt"), "w") as f:

The current script has extension .tex

with open(get_current_script(), "r") as script:

should_write = False

22

for line in script:
if line.startswith("### CODESTARTSHERE"):
should_write = True
elif line.startswith("### CODESTOPSHERE"):
should_write = False
elif "HIDEME" in line:
pass
else:
if should_write:
f.write(line)
CODESTARTSHERE
- Placeholder called __ROBEXT_PYTHON_EXEC__ contains:
python
- Placeholder called __ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__ contains:
finished_with_no_error()
- Placeholder called __ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__ contains
This file will be loaded in latex. Useful to pass data to the main document
f_out_write = open("__ROBEXT_OUTPUT_PREFIX__-out.tex", "w")
import os
import sys
def write_to_out(text):
"""Write to the -out.tex file that is loaded by default"""
f_out_write.write(text)
def parse_args():
args = {}
if len(sys.argv) % 2 == 0:
print ("Error: the number of arguments must be even, as tuples of name
and value")

exit (1)
for i in range(0,len(sys.argv)-1,2):
args[sys.argv[i+1]] = sys.argv[i+2]
return args
def get_cache_folder():
)30
Path of the cache folder. Warning: this works only when the python script

is located in this cache folder (that should be true when it’s called
from LaTeX)

PPN
return os.path.abspath(os.path.dirname(sys.argv[0]))
def get_file_base():

1)

Outputs the base of the files (i.e. something like robExt-somehash,
without any extension)

))

return os.path.splitext(os.path.basename(sys.argv[0]))[0] # __file__ does
not work as it refers to the library

23

def get_current_script():

)2

Outputs the path of the current script

1))

return os.path.abspath(sys.argv[0]) # __file__ does not work as it refers

to the library

def get_filename_from_extension(extension):

2
If you want to create a file with extension ’extension’ (with the
appropriate base name), this command

is for you. For instance get_filename_from_extension(".mp4") would return
something like

robExt-somehash.mp4
the extension can also be like get_filename_from_extension("-out.tex")
etc.
)3
return os.path.join(get_cache_folder(), get_file_base() + extension)
def get_verbatim_output():
>?’Returns the path to -out.txt that is read by verbatim output’’’
return get_filename_from_extension("-out.txt")
def get_pdf_output():
>?’Returns the path to -out.txt that is read by verbatim output’’’
return get_filename_from_extension(".pdf")
def finished_with_no_error():

PPN

Call this at the end of your script. This creates the path of the final
pdf file that should be

created (otherwise robust-externalize will think that the compilation
failed)
)3
if not os.path.exists(get_filename_from_extension(".pdf")):
we create an empty path
with open(get_filename_from_extension(".pdf"), ’w’) as f:
pass
Starting main content
__ROBEXT_MAIN_CONTENT__
Ending main content
__ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__
f_out_write.close()
- Placeholder called __ROBEXT_PYTHON_IMPORT__ contains:

- Placeholder called __ROBEXT_PYTHON__ contains:
__ROBEXT_PYTHON_IMPORT__
__ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__

- Placeholder called __ROBEXT_LATEX_ENGINE__ contains:
pdflatex

24

- Placeholder called __ROBEXT_COMPILATION_COMMAND_OPTIONS__ contains:
-shell-escape -halt-on-error
- Placeholder called __ROBEXT_COMPILATION_COMMAND_LATEX__ contains:

__ROBEXT_LATEX_ENGINE__ __ROBEXT_COMPILATION_COMMAND_OPTIONS__
"__ROBEXT_SOURCE_FILE__"

- Placeholder called __ROBEXT_WRITE_DEPTH_TO_OUT_FILE__ contains:

\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}/,
\string\def\string\robExtHeight{\the\ht\boxRobExt1}%
\string\def\string\robExtDepth{\the\dp\boxRobExt}/

Y

- Placeholder called __ROBEXT_CREATE_OUT_FILE__ contains:

%% We save the height/depth of the content by using a savebox:

\newwrite\writeRobExt/

\immediate\openout\writeRobExt=\jobname-out.tex}

- Placeholder called __ROBEXT_MAIN_CONTENT_WRAPPED__ contains:

__ROBEXT_CREATE_OUT_FILE__Y%

\newsavebox\boxRobExt%

\savebox{\boxRobExt}{’
__ROBEXT_MAIN_CONTENT__%

Y

\usebox{\boxRobExt}%

__ROBEXT_WRITE_DEPTH_TO_OUT_FILE__Y%

- Placeholder called __ROBEXT_LATEX__ contains:

\documentclass[__ROBEXT_LATEX_OPTIONS__]{__ROBEXT_DOCUMENT_CLASS__}

__ROBEXT_PREAMBLE__

\begin{document}%

__ROBEXT_MAIN_CONTENT_WRAPPED__

\end{document?}

- Placeholder called __ROBEXT_LATEX_TRIM_LENGTH__ contains:

30cm

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ contains:

\robExtAddCachePathAndName {\robExtFinalHash .pdf}

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ contains:

- Placeholder called __ROBEXT_PREAMBLE__ contains:

- Placeholder called __ROBEXT_DOCUMENT_CLASS__ contains:
standalone
- Placeholder called __ROBEXT_LATEX_OPTIONS__ contains:

- Placeholder called __ROBEXT_VERBATIM_COMMAND__ contains:
\verbatiminput
\printPlaceholderNoReplacement{(name placeholder)}

Prints the verbatim content of a given placeholder, without evaluating it and without re-

25

placing inner placeholders: it is used mostly for debugging purposes and will be
used in this documentation to display the content of the placeholder for educational purposes.
The stared version prints it inline.

The (unexpanded) template contains
Hello NAME I am a really basic template $\delta _n$.

The (unexpanded) template contains Hello NAME I am a really basic template $\delta
_n$.

\placeholderFromContent{__LIKES__}{Hello NAME I am a really basic template δ_n.}
\placeholderFromContent{NAME}{Alice}

The (unexpanded) template contains \printPlaceholderNoReplacement{__LIKES__J}.\\

The (unexpanded) template contains \printPlaceholderNoReplacement*{__LIKES__}

\printPlaceholder{(name placeholder)}

Like \printPlaceholderNoReplacement except that it first replaces the inner placeholders.
The stared version prints it inline.

The (unexpanded) template contains
Hello Alice I am a really basic template $\delta _n$.

The (unexpanded) template contains Hello Alice I am a really basic template $\delta
_n$.

\placeholderFromContent{__LIKES__}{Hello NAME I am a really basic template δ_n.}
\placeholderFromContent{NAME}{Alice}

The (unexpanded) template contains \printPlaceholder{__LIKES__}.\\

The (unexpanded) template contains \printPlaceholder*{__LIKES__}

\evalPlaceholderNoReplacement{(name placeholder)?}

Evaluates the content of a given placeholder as a I4TEX code, without replacing the place-
holders contained inside (mostly used for debugging purposes).

The (unexpanded) template evaluates to “Hello NAME I am a really basic template d,,.”.

\placeholderFromContent{__LIKES__}{Hello NAME I am a really basic template δ_n.}
\placeholderFromContent{NAME}{Alice}
The (unexpanded) template evaluates to ‘‘\evalPlaceholderNoReplacement{__LIKES__}’’.

\getPlaceholderNoReplacement{(name placeholder)}

Like \evalPlaceholderNoReplacement except that it only outputs the string without evalu-
ating the macros inside.

The (unexpanded) template contains Hello NAME I am a really basic template $\delta
_n$.

\placeholderFromContent{__LIKES__}{Hello NAME I am a really basic template δ_n.}
\placeholderFromContent{NAME}{Alice}
The (unexpanded) template contains \texttt{\getPlaceholderNoReplacement{__LIKES__}}

4.2.3 Setting a value to a placeholder

\placeholderFromContent{(name placeholder)}{(content placeholder)}

26

\setPlaceholder{(name placeholder)}{{content placeholder)}

/TrobExt/set placeholder={(name placeholder)}{(content placeholder)} (style, no default)

/robExt/set placeholder from content={(name placeholder)}{(content placeholder)} (style,
no default)

\placeholderFromContent (and its alias \setPlaceholder and its equivalent pgf styles
/robExt/set placeholder and /robExt/set placeholder from content) is useful to set
a value to a given placeholder.

The (unexpanded) template contains
Hello I am a basic template with math $\delta _n$ and macros \hello

and after evaluation and setting the value of hello, you get “Hello I am a basic template
with math §,, and macros Hello my friend!”.

\placeholderFromContent{__LIKES__}{Hello I am a basic template with math δ_n and macros \hello}
The (unexpanded) template contains \printPlaceholderNoReplacement{__LIKES__} and /

after evaluation and setting the value of hello,/

\def\hello{Hello my friend!}/

you get ‘‘\evalPlaceholder{_ _LIKES__}’’.

As you can see, the precise content is not exactly identical to the original string:
KTEX comments are removed, spaces are added after macros, some newlines are removed etc.
While this is usually not an issue when dealing with IXTEX code, it causes some troubles when
dealing with non-IATEX code. For this reason, we define other commands (see for instance
PlaceholderFromCode below) that can accept verbatim content; the downside being that
ETEX forbids usage of these verbatim commands inside other macros, so you should always
define them at the top level (this seems to be fundamental to how KTEX works, as any input
to a macro gets interpreted first as a BTEX string, losing all comments for instance). Note
that this is not as restrictive as it may sound, as it is always possible to define the needed
placeholders before any macro, while using them inside the macro, possibly combining them
with other placeholders (defined either before or inside the macro).

But before seeing how to define placeholder containing arbitrary code, let us first see how we
can define a placeholder recursively, by giving it a value based on its previous value (useful for
instance in order to add stuff to it).

\setPlaceholderRec{(new placeholder)}{{content with placeholder)}

/robExt/set placeholder rec={(name placeholder)}{(content placeholder)} (style, no default)
\setPlaceholderRec{foo}{bar} is actually an alias for \getPlaceholderInResult [foo] {bar}.
Note that contrary to \setPlaceholder, it recursively replaces all inner placeholders. This is
particularly useful to add stuff to an existing (or not) placeholder:

List of placeholders:
- Placeholder called __MY_COMMAND__ contains:

pdflatex myfile

\setPlaceholderRec{__MY_COMMAND__}{pdflatex}
\setPlaceholderRec{__MY_COMMAND__}{__MY_COMMAND__ myfile}
\printAllPlaceholdersExceptDefaults

Note that the if the placeholder content contains at the end the placeholder name, we will
automatically remove it to avoid infinite recursion at evaluation time. This has the benefit
that you can add something to a placeholder even if this placeholder does not exists yet (in
which case it will be understood as the empty string):

List of placeholders:
- Placeholder called __COMMAND_ARGS__ contains:

-1 -s

27

\setPlaceholderRec{__COMMAND_ARGS__}{__COMMAND_ARGS__ -1}
\setPlaceholderRec{__COMMAND_ARGS__}{__COMMAND_ARGS__ -s}
\printAllPlaceholdersExceptDefaults

Note that sometimes, you might not want to use \setPlaceholderRec to simply append some
data to the placeholder as it will also evaluate the inner placeholders (meaning that you will not
be able to redefine them later). For this reason, we also provide functions to add something to the
placeholder without evaluating it first:

\addToPlaceholder*{(placcholder)}{{content to add)}

\addBeforePlaceholder*{(placeholder)}{{content to add)}

/robExt/add to placeholder={{name placeholder)}{{content to add)} (style, no default)

/robExt/add to placeholder no space={(name placeholder)}{(content to add)} (style, no
default)

/TobExt/add before placeholder={(name placeholder)}{(content to add)} (style, no default)

/TobExt/add before placeholder no space={(name placeholder)}{{content to add)} (style,
no default)

\addToPlaceholder{foo}{bar} adds bar at the end of the placeholder foo (by default it
also adds a space, unless you use the star version), creating it if it does not exist (the before
variants add the content. .. before).

List of placeholders:
- Placeholder called __COMMAND__ contains:

time __ENGINE__ --option --other-option
- Placeholder called __ENGINE__ contains:
pdflatex

\setPlaceholder{__ENGINE__}{pdflatex}
\setPlaceholder{__COMMAND__}{__ENGINE__ --option}
\addToPlaceholder{__COMMAND__}{--other}
\addToPlaceholder*{__COMMAND__}{-option}
\addBeforePlaceholder{__COMMAND__}{time}
\printAllPlaceholdersExceptDefaults

\evalPlaceholderInplace{(name placeholder)}
/robExt/eval placeholder inplace={(name placeholder)} (style, no default)

This command will update (inplace) the content of a macro by first replacing recursively the
placeholders, and finally by expanding the IXTEX macros.

List of placeholders:
- Placeholder called __MACRO_EVALUATED__ contains:

Initial value
- Placeholder called __MACRO_NOT_EVALUATED__ contains:
\mymacro

Compare Initial value and Final value.

\def\mymacro{Initial value}

\placeholderFromContent{__MACRO_NOT_EVALUATED__}{\mymacro}
\placeholderFromContent{__MACRO_EVALUATED__}{\mymacro}
\evalPlaceholderInplace{__MACRO_EVALUATED__}

\printAllPlaceholdersExceptDefaults

\def\mymacro{Final value}

Compare \evalPlaceholder{__MACRO_EVALUATED__} and \evalPlaceholder{__MACRO_NOT_EVALUATED__}.

/TobExt/set placeholder eval={(name placeholder)}{({content placeholder)} (style, no
default)

28

Alias for \setPlaceholderRec{#1}{#2}\evalPlaceholderInplace{#1}: set and evaluate
recursively the placeholders and macros. This can be practical to pass the value of a coun-
ter/macro to the template (of course, if this value is fixed, you can also directly load it from
the preambule):

\begin{CacheMe}{tikz, set placeholder eval={__thepage__}{\thepage}}
\node [rounded corners, fill=red]{The current page is __thepage__.};
\end{CacheMe}

Note that this works well for commands that expand completely, but some more complex
commands might not expand properly (like cref). I need to investigate how to solve this
issue, meanwhile you can still disable externalization for these pictures.

\begin{PlaceholderFromCode}{{name placeholder)}
(environment contents)
\end{PlaceholderFromCode}
\begin{setPlaceholderCode}{(name placeholder)}
{environment contents)
\end{setPlaceholderCode}

These two (aliased) environments are useful to set a verbatim value to a given placeholder:
the advantage is that you can put inside any code, including KTEX comments, the downside is
that you cannot use it inside macros and some environments (so you typically define it before
the macros and call it inside).

List of placeholders:
- Placeholder called __PYTHON_CODE__ contains:

def my_function(b): # this is a python code
c =1}
d[42] =0

return b

\begin{PlaceholderFromCode}{__PYTHON_CODE__}
def my_function(b): # this is a python code
c =1}
d[42] = 0
return b
\end{PlaceholderFromCode}
\printAllPlaceholdersExceptDefaults

Note that PlaceholderFromCode should not be used inside other macros or inside some envi-
ronments (notably the ones that need to evaluate the body of the environment, e.g. using +b
argument or environ) as verbatim content is parsed first by the macro, meaning that some
characters might be changed or removed. For instance, any percent character would be con-
sidered as a comment, removing the rest of the line. However, this should not be be problem
if you use it outside of any macro or environment, or if you load it from a file. For instance
this code:
\begin{PlaceholderFromCode}{__PYTHON_CODE__}
def my_function(b): # this is a python code

c={}

d[42] =0

return b % 2
\end{PlaceholderFromCode}
\printAllPlaceholdersExceptDefaults

would produce:

29

List of placeholders:
- Placeholder called __PYTHON_CODE__ contains:

def my_function(b): # this is a python code
c={}
d[42] = 0

return b % 2

\printAllPlaceholdersExceptDefaults

Note that of course, you can define a placeholder before a macro and call it inside (explaining
how we can generate this documentation).

\placeholderPathFromFilename{(name placeholder)}{(filename)}

/robExt/set placeholder path from filename={(name placeholder)}{{filename)} (style, no
default)
\placeholderPathFromFilename{__MYLIB__} mylib.py} will copy mylib.py in the cache
(setting its hash depending on its content), and set the content of the placeholder __MYLIB__
to the path of the library in the cache. Note that the path is relative to the cache folder (it is
easier to use for instance if you want to call this library from a code already in the cache).

List of placeholders:
- Placeholder called __MYLIB__ contains:
robExt-F6666F86DBOACE43E817ATEB3729FAS6mylib. py

You can also get the path relative to the root folder:
robustExternalize /robExt-F6666FS6DBOACE43E817ATEB3729FA56mylib.py

\placeholderPathFromFilename{__MYLIB__}{mylib.py}
\printAllPlaceholdersExceptDefaults

You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}

\placeholderFromFileContent{{name placeholder)}{(filename)}
/robExt/set placeholder from file content={(name placeholder)}{(filename)} (style, no
default)

\placeholderFromFileContent{__MYLIB__}{mylib.py} will set the content of the place-
holder __MYLIB__ to the content of mylib.py.

List of placeholders:
- Placeholder called __MYLIB__ contains:

def mylib(Q):
Some comments
a=b % 2

return "Hello world"

\placeholderFromFileContent{__MYLIB__}{mylib.py}
\printAllPlaceholdersExceptDefaults

\placeholderPathFromContent{{name placeholder)} [{suffiz)]{{content)}
/TobExt/set placeholder path from content={(name placeholder)}{(suffix)}{(content)}
(style, no default)

\placeholderPathFromContent{__MYLIB__}{some content} will copy some content in a
file in the cache (setting its hash depending on its content, the filename will end with suffix
that defaults to .tex), and set the content of the placeholder __MYLIB__ to the path of the

30

file in the cache. Note that the path is relative to the cache folder (it is easier to use for
instance if you want to call this library from a code already in the cache).

List of placeholders:
- Placeholder called __MYLIB__ contains:

robExt-AC364A656060BFF5643DD21EAF3B64E6 . py

You can also get the path relative to the root folder:
robustExternalize /robExt-AC364A656060BFF5643DD21EAF3B64E6.py
As a sanity check, this file contains

some contents b

\placeholderPathFromContent{__MYLIB__}[.pyl{some contents b}
\printAllPlaceholdersExceptDefaults

You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}\\

As a sanity check, this file contains
\verbatiminput{\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}}

\begin{PlaceholderPathFromCode} [(suffiz)]{(name placeholder)}
(environment contents)
\end{PlaceholderPathFromCode}

This environment is similar to \placeholderPathFromContent except that it accepts verbatim
code (therefore WTEX comments, newlines etc. will not be removed). However, due to WTEX
limitations, this environment cannot be used inside macros or some environments, or this
property will not be preserved. For instance, if you create your placeholder using:

\begin{PlaceholderPathFromCode}[.py]l{__MYLIB__}
def my_function(b): # this is a python code

c = {2

d[42] = 0

return b % 2
\end{PlaceholderPathFromCode}

You can then use it like:

List of placeholders:
- Placeholder called __MYLIB__ contains:

robExt-CDAE704490400F29B9COC8DAE2CC48BY . py

You can also get the path relative to the root folder:
robustExternalize/robExt-CDAE704490400F29B9COCS8DAE2CC48B7.py
As a sanity check, this file contains

def my_function(b): # this is a python code
c = {2}
d[42] = 0
return b % 2

\printAllPlaceholdersExceptDefaults

You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}\\

As a sanity check, this file contains
\verbatiminput{\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}}

\copyPlaceholder{(new placeholder)}{{old placeholder)}
/robExt/copy placeholder={(new placeholder)}{{old placeholder)} (style, no default)

This creates a new placeholder with the content of old placeholder. Note that this is
different from:

31

\setPlaceholder{new placeholder}{old placeholder}
because if we modify 01d placeholder, this will not affect new placeholder.

List of placeholders:
- Placeholder called __MY_CONTENT__ contains:

The content used to be __MY_OLD_CONTENT__
- Placeholder called __MY_OLD_CONTENT__ contains:

Some content

\setPlaceholder{__MY_CONTENT__}{Some content}
\copyPlaceholder{__MY_OLD_CONTENT__}{__MY_CONTENT__}
\setPlaceholder{__MY_CONTENT__}{The content used to be
\printAllPlaceholdersExceptDefaults

_MY_OLD_CONTENT__}

It is useful for instance if you want to use a different value for __ROBEXT_MAIN_CONTENT__:
first copy __ROBEXT_MAIN_CONTENT__ to another placeholder, say __NEW_MAIN_CONTENT__,
and then set __ROBEXT_MAIN_CONTENT__ to point to an arbitrary template that may load
__NEW_MAIN_CONTENT__

4.3 Caching a content
4.3.1 Basics

\cacheMe [(preset style)]1{{content to cache)}

\begin{CacheMe}{(preset style)}
(environment contents)

\end{CacheMe}

This command (and its environment alias) is the main entry point if you want to cache
the result of a file. The preset style is a pgfkeys-based style that is used to configure
the template that is used, the compilation command, and more. You can either inline
the style, or use some presets that configure the style automatically. After evaluating
the style, the placeholders __ROBEXT_TEMPLATE__ (containing the content of the file) and
__ROBEXT_COMPILATION_COMMAND__ (containing the compilation command run in the cache
folder, that can use other placeholders internally like __ROBEXT_SOURCE_FILE__ to get the
path to the source file) should be set. Note that we provide some basic styles that allow set-
tings these placeholders easily. See section 4.5 for a list of existing placeholders and presets.
The placeholder __ROBEXT_MAIN_CONTENT__ will automatically be set by this command (or
environment) so that it equals the content of the second argument (or the body of the envi-
ronment). This style can also configure the command to use to include the file and more. By
default it will insert the compiled PDF, making sure that the depth is respected (internally,
we read the depth from an aux file created by our KTEX preset), but you can easily change it
to anything you like.

For an educational purpose, we write here an example that does not exploit any preset. In
practice, we recommend however to use our presets, or to define new presets based on our
presets (see below for examples).

32

\begin{CacheMe}{set template={
\documentclass{standalone}
\begin{document}
__ROBEXT_MAIN_CONTENT_
\end{document}
¥o
set compilation command={pdflatex -shell-escape -halt-on-error "__ROBEXT_SOURCE_FILE__"},
custom include command={/

\includegraphics [width=4cm,angle=45] {\robExtAddCachePathAndName{\robExtFinalHash.pdf}}/
Fo

}
This content is cached δ.
\end{CacheMe}

\robExtConfigure{(preset style)}

You can then create your own style (or preset) in \robExtConfigure (that is basically an
alias for \pgfkeys{/robExt/.cd,#1}) containing your template, add your own placeholders
and commands to configure them etc.

4% Define your presets once:
\robExtConfigure{/
my latex preset/.style={
4% Create a default value for my new placeholders:
set placeholder={__MY_COLOR__}{red},
set placeholder={__MY_ANGLE__}{45},
/% We can also create custom commands to "hide" the motion of placeholder
set my angle/.style={
set placeholder={__MY_ANGLE__}{##1}
},
set template={
\documentclass{standalone}
\usepackage{xcolor}
\begin{document}
\color{__MY_COLOR__}__ROBEXT_MAIN_CONTENT__
\end{document}
},
set compilation command={pdflatex -shell-escape -halt-on-error "__ROBEXT_SOURCE_FILE__"},
custom include command={J
% The include command %s a regular LaTeX command, but using
7% \evalPlaceholder avoids the need to play with ezpandafter, getPlaceholder etc...
\evalPlaceholder{/
\includegraphics [width=/cm,angle=__MY_ANGLE__,origin=cl{/

\robExtAddCachePathAndName{\robExtFinalHash.pdf}/

/% Reuse them later...

\begin{CacheMe}{my latex preset}

This content is cached δ.

\end{CacheMe}

% And configure them at will

\begin{CacheMe}{my latex preset, set placeholder={__MY_COLOR__}{green}, set my angle=-45}
This content is cached δ.

\end{CacheMe}

33

\begin{CacheMeCode}{(preset style)}
(environment contents)
\end{CacheMeCode}

Like CacheMe, except that the code is read verbatim by KTEX. This way, you can put
non-I4TEX code inside safely, but you will not be able to use it inside a macro or some
environments that read their body. Here is an example where we define an environ-
ment that automatically import matplotlib, save the figure, and insert it into a figure.
Note that we define in this example new commands to type set caption=foo instead of
set placeholder={__FIG_CAPTION__}{foo}.

4% Define the python code to use as a template

4% (impossible to define it in \robEztConfigure directly since
%% it is a verbatim environment)
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE__}
import matplotlib.pyplot as plt

import sys

__ROBEXT_MAIN_CONTENT__

plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

% Create a new preset called matplotlib
\robExtConfigure{
matplotlib figure/.style={
set template={__MY_MATPLOTLIB_TEMPLATE__},
set compilation command={python "__ROBEXT_SOURCE_FILE__"},
set caption/.style={
set placeholder={__FIG_CAPTION__}{##1}
Iy
set label/.style={
set placeholder={__FIG_LABEL__}{##1}
I
set includegraphics options/.style={
set placeholder={__INCLUDEGRAPHICS_OPTIONS__}{##1}
ks
set caption={},
set label={},
set includegraphics options={width=1cm},
custom include command={/
\evalPlaceholder{/
\begin{figure}
\centering
\includegraphics[__INCLUDEGRAPHICS_OPTIONS__]{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}/
\caption{__FIG_CAPTION__a}
\label{__FIG_LABEL__}
\end{figure}/

ik Use it

\begin{CacheMeCode}{matplotlib figure, set includegraphics options={width=.8\linewidth}, set caption={Hello}}
year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)

plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)

\end{CacheMeCode}

Note that as we explained it before, due to KTEX limitations, it is impossible to call
CacheMeCode inside macros and inside some environments that evaluate their body. To avoid
that issue, it is always possible to define the macro before and call it inside. We will exem-
plify this on the previous example, but note that this example is only for educational
purposes since the environment figure does not evaluate its body, and CacheMeCode can
therefore safely be used inside without using this trickery:

34

120 A

100 A

80 A

60 -

Number of futurestud.io Tutorials

40 A

2014 2015 2016 2017 2018 2019
Year

Figure 2: An example to show how matplotlib pictures can be inserted

4% Define the python code to use as a template

4% (impossible to define it in \robEztConfigure directly since
%% it is a verbatim environment)
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE__}
import matplotlib.pyplot as plt

import sys

__ROBEXT_MAIN_CONTENT__

plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

% Create a new preset called matplotlib
\robExtConfigure{
matplotlib/.style={
set template={__MY_MATPLOTLIB_TEMPLATE__},
set compilation command={python "__ROBEXT_SOURCE_FILE__"},
set includegraphics options/.style={
set placeholder={__INCLUDEGRAPHICS_OPTIONS__}{##1}
b
set includegraphics options={width=1cm},
custom include command={/
\evalPlaceholder{/
\includegraphics[__INCLUDEGRAPHICS_OPTIONS__]{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}/

4% You cannot use CacheMeCode inside some macros or environments due to fundamental LaTeX limitations.
4% But you can always define them before, and call them inside:

\begin{SetPlaceholderCode}{__TMP__}

year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)

plt.xlabel(’Year’)

plt.ylabel (’Number of futurestud.io Tutorials’)

\end{SetPlaceholderCode}

\begin{figure}

\centering

\cacheMe [matplotlib, set includegraphics options={width=.8\linewidth}, set
caption={Hello}]{__TMP__}

\caption{An example to show how code can baDinserted into macros or environmments that evaluate their contents (th
\end{figure}

4.3.2 Options to configure the template

/robExt/set template={(content template)} (style, no default)

Style that alias to set placeholder={__ROBEXT_TEMPLATE__}{#1}, in order to define the
placeholder that will hold the template of the final file.

4.3.3 Options to configure the compilation command

/robExt/set compilation command={(compilation command)} (style, no default)

Style that alias to set placeholder={__ROBEXT_COMPILATION_COMMAND__3}{#1}, in order to
define the placeholder that will hold the compilation command.

/TobExt/add argument to compilation command={{argument)} (style, no default)
/TobExt/add arguments to compilation command={{argument)} (style, no default)

add argument to compilation command is a style that alias to:

set placeholder={__ROBEXT_COMPILATION_COMMAND__}{__ROBEXT_COMPILATION_COMMAND__ "#1"}
in order to add an argument to the compilation command. add arguments to compilation command
(note the s) accepts multiple arguments separated by a comma.

/robExt/add key value argument to compilation command={(key=value)} (style, no
default)

Adds to the command line two arguments key and value. This is a way to quickly pass
arguments to a script: the script just needs to loop over the arguments and consider the
odd elements as keys and the next elements as the value. Another option is to insert some
placeholders directly in the script.

/robExt/add key and file argument to compilation command={(key=filename)} (style, no
default)

filename is the path to a file in the root folder. This adds, as:

add key value argument to compilation command

two arguments, where the first argument is the key, but this time the second argument is
the path of filename relative to the cache folder (useful since scripts run from this folder).
Moreover, it automatically ensures that when filename changes, the file gets recompiled.
Note that contrary to some other commands, this does not copy the file in the cache, which
is practical notably for large files like videos.

4.3.4 Options to configure the inclusion command

The inclusion command is the command that is run to include the cached file back in the pdf (e.g.
based on \includegraphics). We describe now how to configure this command.

/TobExt/custom include command advanced={(include command)} (style, no default)
Sets the command to run to include the compiled file. You can use:
\robExtAddCachePathAndName{\robExtFinalHash.pdf}
in order to get the path of the compiled pdf file. Note that we recommend rather to use
custom include command that automatically checks if the file compiled correctly and that
load the *-out.tex file if it exists (useful to pass information back to the pdf).

/TobExt/custom include command={(include command)} (style, no default)

Sets the command to run to include the compiled file, after checking if the file has been
correctly compiled and loading *-out.tex (useful to pass information back to the pdf).

/TobExt/do not include pdf (style, no value)

Do not include the pdf. Useful if you only want to compile the file but use it later (note that
you should still generate a .pdf file, possibly empty, to indicate that the compilation runs
smootly). Equivalent to:

custom include command={}

36

/TobExt/enable manual mode (style, no value)
/robExt/disable manual mode (style, no value)

If you do or do not want to ask latex to run the compilation commands itself (for instance for
security reasons), you can use these commands and run the command manually later:

The next picture must be manually compiled (see JOBNAME-robExt-compile-missing-

figures.sh):
Draft Mode: you are in manual mode: please compile
robustExternalize /robExt-762263F92F50484B3E9B643BEF809505.tex via

“cd robustExternalize/ && pdflatex -shell-escape -halt-on-error ”robExt-
762263F92F50484B3E9B643BEF809505.tex”” or call “bash robust-externalize-
robExt-compile-missing-figures.sh” to compile all missing figures.

\robExtConfigure{
enable manual mode

}

The next picture must be manually compiled /
(see JOBNAME-robExt-compile-missing-figures.sh):\\ 7/
\begin{tikzpictureC} [baseline=(4.base)] []
\node[fill=red, rounded corners](A){I must be manually compiled.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay textl};
\end{tikzpictureC}

See section 4.7 for more details.

/robExt/include graphics args (style, no value)

By default, the include commands runs \includegraphics on the pdf, and possibly raises it
if needed. You can customize the arguments passed to \includegraphics here.

4.3.5 Configuration of the cache

If needed, you can configure the cache:

/robExt/set filename prefix={(prefix)} (style, no default)

By default, the files in the cache starts with robExt-. If needed you can change this here, or
by manually defining \def\robExtPrefixFilename{yourPrefix-}.

/TobExt/set subfolder and way back={{cache folder)}{(path to project from cache)} (style,
no default)

By default, the cache is located in robustExternalize/, using:

set subfolder and way back={robustExternalize/}{../},

You can customize it the way you want, just be make sure that going to the second arguments
after going to the first argument leads you back to the original position.

37

4.3.6 Customize or disable externalization

You might want (sometimes or always) to disable externalization, for instance to use remember picture
ExtExternalizeAllTikzpictures:

/TobEft/disable externalizaly (style, no value)
/robExt/enable externalizatio (style, no value)

nable or disable externalization.

% In theory all pictures should be externalized (so remember picture should fail)
\robExtExternalizeAllTikzpictures
/% But we can disable it temporarily
\begin{tikzpicture} [remember picture] [disable externalization]

\node [rounded corners, fill=red] (A){This figure is not externalized.

This way, it can use remember picture.};

\draw[->,overlay] (A) tol[bend right] (pointtome) ;

\end{tikzpicture}\\

% You can also disable it globally/in a group:
{

\robExtConfigure{disable externalization}

\begin{tikzpicture} [remember picture]
\node [rounded corners, fill=red] (A){This figure is not externalized.
This way, it can use remember picture.};
\draw[->,overlay] (A.west) to[bend left] (pointtome);
\end{tikzpicture}\\

\begin{tikzpicture} [remember picture]
\node [rounded corners, fill=red] (A){This figure is not externalized.
This way, it can use remember picture.};
\draw[->,overlay] (A.east) to[bend right] (pointtome);
\end{tikzpicture}

/TobExt/command if no externalization (style, no value)

You can easily change the command to run if externalization is disabled using by setting the
.code of this key. By default, it is configured as:

command if no externalization/.code={%
\robExtDisableTikzpictureOverwrite\evalPlaceholder{__ROBEXT_MAIN_CONTENT__}%

}

/TobExt/print verbatim if no externalization (style, no value)
Sets command if no externalization to print the verbatim content of __ROBEXT_MAIN_CONTENT__
if externalization is disabled. Internally, it just sets it to:
\printPlaceholder{__ROBEXT_MAIN_CONTENT__}
This is mostly useful when typesetting __ROBEXT_MAIN_CONTENT__ directly does not make
sense (e.g. in python code). This style is used for instance in the python preset, allowing us
to get:

with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:
for i in range(5):
f.write(f"Hello {i}, we are on page 38\n")

38

\begin{CacheMeCode}{python,

verbatim output,

set placeholder eval={__thepage__}{\thepage},

4% We disable exzternalization

disable externalization}
with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:

for i in range(5):

f.write(f"Hello {i}, we are on page

\end{CacheMeCode}

_thepage__\n")

You can also disable the externalization on all elements that use a common preset, for in-
stance you can disable externalization on all bash instances (useful if you are on Windows for
instance):

$outputTxt contains the path of the file that will be printed via
\verbatiminput
uname -srv > "${outputTxt}"

\robExtConfigure{

% bash code will not be compiled (useful on windows for instance)

bash/.append style={

disable externalization

e
}
\begin{CacheMeCode}{bash, verbatim output}
$outputTxt contains the path of the file that will be printed via \verbatiminput
uname -srv > "${outputTxtl}"

\end{CacheMeCode}
/robExt/execute after each externalization (style, no value)
/TobExt/execute before each externalization (style, no value)

By doing execute after each externalization={some code}, you will run some code after
the externalization. This might be practical for instance to update a counter (e.g. the number
of pages...) based on the result of the compiled file.

4.3.7 Dependencies

In order to enforce reproducibility, you should tell what are the files that your code depends on,
by adding this file as a dependency. This has the advantage that if this file is changed, your code
is automatically recompiled. On the other hand, you might not want this behavior (e.g. if this
file often changes in a non-important way): in that case, just don’t add the file as a dependency
(but keep that in mind as you might not be able to recompile your file if you clear the cache if you
introduced breaking changes).

/robExt/dependencies={{list,of,dependencies)} (style, no default)
/robExt/add dependencies={(list,of,dependencies)’} (style, no default)
/robExt/reset dependencies (style, no value)

Set/add/reset the dependencies (you can put multiple files separated by commas). These files
should be relative to the main compiled file. For instance, if you have a file common_inputs.tex
that you want to input in both the main file and in the cached files, that contains, say:
\def\myValueDefinedInCommonInputs{42}

then you can add it as a dependency using:

The answer is 42.

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__/common_inputs.tex}}}
The answer is \myValueDefinedInCommonInputs.
\end{CacheMe}

39

Note that the placeholder __ROBEXT_WAY_BACK__ contains the path from the cache folder
(containing the .tex that will be cached) to the root folder.
This way, you can easily input files contained in the root folder.

4.3.8 Pass compiled file to another template

It can sometimes be handy to use the result of a previous cached file to cache another file, or to
do anything else (e.g. it can also be practical to debug an issue). name output can be used to do
that

/robExt/name output={(macro name)} (style, no default)

name output=foo will create two global macros \foo and \fooInCache: \foo expands to
the prefix of the files created in the template like robExt-somehash, and \fooInCache
also adds the cache folder like robustExternalize/robExt-somehash. You can then use
set placeholder eval to send it to another cached file. It is then your role to add the
extension, usually .tex to get the source (even if the source is a python file), .pdf to get
the pdf, -out.tex to get the file that is loaded before the import, -out.txt if you wanted
to make it compatible with verbatim output (this list is not exhaustive as each script might
decide to create a different output file). Here is a demo:

Hello World!

The prefix is robExt-152B663D7B406EE4253C220061BDA8B2 and with the cache folder it is
in:

robustExternalize/robExt-152B663D7B406EE4253C220061BDA8B2.

It this can be helpful for instance to debug, as you can inspect the source:

\documentclass[,margin=0cm] {standalone}
\usepackage {tikz}

\begin{document}’

%% We save the height/depth of the content by using a savebox:

\newwrite\writeRobExt/

\immediate\openout\writeRobExt=\jobname-out.tex

A

\newsavebox\boxRobExt%

\savebox{\boxRobExt}{%

\begin {tikzpicture}[baseline=(A.base)] \node [draw,rounded corners,fill=pink!60] (A){He

%

\usebox{\boxRobExt}

\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}%
\string\def\string\robExtHeight{\the\ht\boxRobExtl}/
\string\def\string\robExtDepth{\the\dp\boxRobExt1}/

%

YA

\end{document}

but it is also practical to define a template based on the previously cached files:

A cached file can use result from another cached file: [Hello World!][Hello World!]

40

\begin{CacheMe}{tikz, do not add margins, name output=mycode}[baseline=(4.base)]
\node [draw,rounded corners,fill=pink/60] (A){Hello World!};
\end{CacheMe}\\ [3mm]

The prefix is \texttt{\mycode} and with the cache folder it is in:\\
\texttt{\mycodeInCachel}.\\

It this can be helpful for instance to debug, as you can inspect the source:
\verbatiminput{\mycodeInCache.tex}

but it is also practical to define a template based on the previously cached files:\\

\begin{CacheMe}{tikz, set placeholder eval={__previous__}{\mycode.pdf}}
\node [rounded corners, fill=green!/50]{A cached file can use result from another cached file:
\includegraphics [width=2cm] {__previous__}\includegraphics [width=2cm]{__previous__}};
\end{CacheMe}

Note that if you do not want to display the first cached file, you can use do not include pdf
to hide it.

4.4 Default presets
We provide by default some presets for famous languages (for now KTEX and python).

4.4.1 All languages

First, here are a few options that are available irrespective of the used language.

/robExt/set includegraphics options={{options)} (style, no default)
/TobExt/add to includegraphics options={({options)} (style, no default)

Set/add options to the \includegraphics run when inserting the pdf (by the default include
command). By default it is empty, but the latex preset sets it to:
trim=__ROBEXT_LATEX_TRIM_LENGTH__ __ROBEXT_LATEX_TRIM_LENGTH__
__ROBEXT_LATEX_TRIM_LENGTH__ __ROBEXT_LATEX_TRIM_LENGTH__

in order to remove the margin added in the standalone package options, which is needed to
display overlay texts.

/TobExt/verbatim output (style, no value)
Shortcut for:

custom include command={%

\evalPlaceholder{,

__ROBEXT_VERBATIM_COMMAND__{%
__ROBEXT_CACHE_FOLDER ROBEXT_OUTPUT_PREFIX__-out.txtl}%

%
},
i.e. instead of printing the pdf we print the content of the file __ROBEXT_QOUTPUT_PREFIX__-out.txt
using the command in __ROBEXT_VERBATIM_COMMAND__, that defaults to \verbatiminput:

-

Hello O
Hello 1
Hello 2
Hello 3
Hello 4

\begin{CacheMeCode}{python, verbatim output}
with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:
for i in range(5):
f.write(f"Hello {i}\n")
\end{CacheMeCode}

41

4.4.2 BIEX

The latex preset is used to cache any KTEX content, like tikz pictures. Note that as of today, it
supports overlay content out of the box (if the overlay is more than 30cm long, you might want to
customize a placeholder), but not images that need to use remember picture.

/TobExt/latex (style, no value)

This style sets the template __ROBEXT_LATEX__ and the compilation command:
__ROBEXT_COMPILATION_COMMAND_LATEX__

(cf section 4.5 for details), and adds a number of styles described below, to easily configure
the most common options. You can use it as follows:

_) S amavcrlay text
The next picture is cached and you can see that overlay

and depth works.

The next picture is cached //
\begin{CacheMe}{latex, add to preamble={\usepackage{tikz}}}
\begin{tikzpicture}[baseline=(4.base)]
\node [fill=red, rounded corners](A){My node that respects baseline.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay textl};
\end{tikzpicture}
\end{CacheMe} and you can see that overlay and depth works.

To see how to create your own preset or automatically load a library, see section 4.6.
The next options can be used after calling the latex style:

/robExt/latex/use latexmk (style, no value)
/robExt/latex/use lualatex (style, no value)
/TobExt/latex/use xelatex (style, no value)

Use latexmk/lualatex/xelatex to compile. It is a shortcut for:
set placeholder={__ROBEXT_LATEX_ENGINE__}{yourfavoriteengine}

/robExt/latex/set latex options={(latex options)} (style, no default)
/robExt/latex/add to latex options={(later options)} (style, no default)

Set/add elements to the set of latex options of the \documentclass (it will automatically add
a comma before if you add an element). Internally it sets __ROBEXT_LATEX_OPTIONS__. By
default, it sets:

margin=__ROBEXT_LATEX_TRIM_LENGTH__ (Where __ROBEXT_LATEX_TRIM_LENGTH__ is de-
fined as 30cm by default) in order to add a margin that will be trimmed later in the
\includegraphics. This is useful not to cut stuff displayed outside of the bounding box
(overlays).

/robExt/latex/set documentclass={(documentclass)} (style, no default)

Set the documentclass of the document (defaults to standalone). Internally, it sets the
placeholder __ROBEXT_DOCUMENT_CLASS__.

/TobExt/latex/set preamble={{code of preamble)} (style, no default)
/TobExt/latex/add to preamble={{code of preamble)} (style, no default)

Set/add element to the preamble (defaults to standalone). Internally, it sets the placeholder
__ROBEXT_DOCUMENT_CLASS__.

/TobExt/latex/do not wrap code (style, no value)

By default, the main content is wrapped into a box in order to measure its depth to properly
set the baseline. If you do not want to do this wrapping, you can set this option. Internally,
it is a shortcut for:

set placeholder={__ROBEXT_MAIN_CONTENT_WRAPPED__}{__ROBEXT_MAIN_CONTENT__}

42

4.4.3 Python

We provide support for python:

/TobExt/python (style, no value)

Load the python preset (inspect __ROBEXT_PYTHON__) for details on the exact template, but
note that this template might be subject to changes. We also provide a few helper functions:

write_to_out (text) writes text to the *-out.tex file that will be loaded automatically
before running the include function

parse_args() is a function that returns a dictionary mapping some keys to val-
ues depending on the called arguments: for instance, if you call the python file
with python script keyl valuel key2 value2, then the dictionary will map keyl to
valuel and key2 to value2. You might like this in conjunction with commands pre-
sented in section 4.3.3. Note that if you place placeholders in your code, you might not
need this, but this is used if you plan to use your script outside of this library.

get_cache_folder () outputs the cache folder.

get_file_base() outputs the prefix of all files that should be created by this script, that
looks like robExt-somehash.

get_current_script () returns the current script.

get_filename_from_extension(extension) outputs the prefix robExt-somehash con-
catenated with the extension. You often need this function to get the path of a file that
your script is creating, for instance, get_filename_from_extension("-out.txt") is the
path *-out.txt of the file that is read by verbatim output.

get_verbatim_output () returns get_filename_from_extension("-out.txt")

finished_with_no_error() creates the pdf file if it does not exists (to certify that the
compilation ran without issues). The template automatically runs this function at the
end.

We demonstrate its usage on a few examples:

Hello O
Hello 1
Hello 2
Hello 3
Hello 4

\begin{CacheMeCode}{python, verbatim output}
with open(get_verbatim_output(), "w") as f:

for i in range(5):
f.write(£"Hello {i}\n")

\end{CacheMeCode}

Importantly: you do not want to indent the whole content of CacheMeCode, or

the

spaces will also appear in the final code.

You can also generate some images. This code will produce the image in fig. 3:

\begin{CacheMeCode}{python, set includegraphics options={width=.8\linewidth}}
import matplotlib.pyplot as plt

year = [2014, 2015, 2016, 2017, 2018, 2019]

tutorial_count = [39, 117, 111, 110, 67, 29]

plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel(’Year’)

plt.ylabel(’Number of futurestud.io Tutorials’)
plt.savefig("__ROBEXT_OUTPUT_PDF__")

\end{CacheMeCode}

43

120 A

100 A

80 A

60 -

Number of futurestud.io Tutorials

40 A

2014 2015 2016 2017 2018 2019
Year

Figure 3: Image generated with python.

Note that by default, the executable called python is run. It seems like on windows python3 is
not created and only python exists, while on linux the user can choose whether python should
point to python3 or python2 (on NixOs, I directly have python pointing to python3, and
in ubuntu, you might need to install python-is-python3 or create a symlink, as explained
here). In any case, you can customize the name of the executable by setting something like:

\setPlaceholder{__ROBEXT_PYTHON_EXEC__}{python3}
or using the style force python3 that forces python3.

/robExt/python print code and result (style, no value)

This is a demo style that can print a python code and its result.

The for loop

1| for name in ["Alice", "Bob"]:
2 print (f"Hello {namel}")

Output:
Hello Alice
Hello Bob

\begin{CacheMeCode}{python print code and result, set title={The for loopl}}

for name in ["Alice", "Bob"]:
print (f"Hello {name}")
\end{CacheMeCode}

You can set __ROBEXT_PYTHON_TCOLORBOX_PROPS__ the options of the tcolorbox,
__ROBEXT_PYTHON_CODE_MESSAGE__ and __ROBEXT_PYTHON_RESULT_MESSAGE__ which are
displayed before the corresponding block, __ROBEXT_PYTHON_LSTINPUT_STYLE__ which con-
tains the default Istinput style and __MY_TITLE__ (cf set title) that contains the title of
the box. Make sure to have the following packages to use the default styling:

44

https://askubuntu.com/questions/1296790/python-is-python3-package-in-ubuntu-20-04-what-is-it-and-what-does-it-actually

\usepackage{pythonhighlight}
\usepackage{tcolorbox}

4.4.4 Bash
We provide a basic bash template, that sets:

set -e
outputTxt="__ROBEXT_OUTPUT_PREFIX__-out.txt"
outputTex="__ROBEXT_OUTPUT_PREFIX__-out.tex"
outputPdf="__ROBEXT_OUTPUT_PDF__"

in order to quit when an error occurs, and to define two variables containing the path to the pdf file
and to the file that is read by the verbatim output setting (that just apply a \verbatiminput
on that file). Finally, it also creates the file outputPdf with touch in order to notify that the
compilation succeeded.

In practice:

Linux 5.15.90 #1-Nix0S SMP Tue Jan 24 06:22:49 UTC 2023

\begin{CacheMeCode}{bash, verbatim output}

$outputTxt contains the path of the file that will be printed via \verbatiminput
uname -srv > "${outputTxt}"

\end{CacheMeCode}

4.4.5 Verbatim text

Sometimes, it might be handy to write the text to a file and use it somehow. This is possible using
verbatim text, that defaults to calling \verbatiminput on that file:

def some_verbatim_fct(a):
See this is a verbatim code where I can use the 7 symbol
return a % b

\begin{CacheMeCode}{verbatim text}

def some_verbatim_fct(a):
See this is a verbatim code where I can use the /7 symbol
return a / b

\end{CacheMeCode}

You can also call verbatim text no include: it will not include the text, but it sets a macro
\robExtPathToInput containing the path to the input file. Use it the way you like! For instance,
we define here a macro codeAndResult that prints the code and runs it (we use a pretty printer
from pgf, so you need to load \usepackage{tikz}\input{pgfmanual-en-macros.tex} to use it).
It is what we use right now in this documentation for verbatim blocks like here. You can obtain a
simpler version using:

We will input the file robustExternalize /robExt-DDA097E3F2A45DB958F5A00BFAFFIBI3.tex:
Demo % with percent
This file contains:

\NewDocumentCommand{\testVerbatim}{+v}{
\begin{flushleft}\ttfamily?’

#1

\end{flushleft}}

\testVerbatim{Demo % with percent}

45

\begin{CacheMeCode}{verbatim text no include}
\NewDocumentCommand{\testVerbatim}{+v}{
\begin{flushleft}\ttfamily/

#1

\end{flushleft}}

\testVerbatim{Demo / with percent}
\end{CacheMeCode}

We will input the file \robExtPathToInput{}:
\input{\robExtPathToInput}

This file contains:
\verbatiminput{\robExtPathToInput}

4.5 List of special placeholders and presets

This library defines a number of pre-existing placeholders, or placeholders playing a special
role. We list some of them in this section. All placeholders created by this library start with
__ROBEXT_. Note that you can list all predefined placeholders (at least those globally defined)
using \printAllPlaceholdersExceptDefaults (note that some other placeholders might be cre-
ated directly in the style set right before the command, and may not appear in this list if you call
it before setting the style).

4.5.1 Generic placeholders

We define two special placeholders that should be defined by the user (possibly indirectly, using
presets offered by this library):

e __ROBEXT_TEMPLATE__ is a placeholder that should contain the code of the file to compile.

e __ROBEXT_MAIN_CONTENT__: is a placeholder that might be used inside __ROBEXT_TEMPLATE__
and that contains the content that the user is expected to type inside the document. For
instance, this might be a tikz picture, a python function without the import etc. This will be
automatically set by CacheMe, CacheMeCode etc, and some styles might add stuff to it (for in-
stance the tikz preset adds the \begin{tikzpicture} around the user code automatically:
this way we do not need to edit the command to disable externalization).

e __ROBEXT_COMPILATION_COMMAND__ contains the compilation command to run to compile
the file (assuming we are in the cache folder).

We also provide a number of predefined placeholders in order to get the name of the source file
etc... Note that most of these placeholders are defined (and/or expanded inplace) late during the
compilation stage as one needs first to obtain the hash of the file, and therefore all dependencies,
the content of the template etc.

e __ROBEXT_SOURCE_FILE__ contains the path of the file to compile (containing the content
of __ROBEXT_TEMPLATE__) like robExt-somehash.tex, relative to the cache folder (since we
always go to this folder before doing any action, you most likely want to use this directly in
the compilation command).

e __ROBEXT_OUTPUT_PDF__ contains the path of the pdf file produced after the compilation
command relative to the cache folder (like robExt-somehash.pdf). Even if you do not plan
to output a pdf file, you should still create that file at the end of the compilation so that this
library can know whether the compilation succeeded.

e __ROBEXT_OUTPUT_PREFIX__ contains the prefix that all newly created file should follow, like
robExt-somehash. If you want to create additional files (e.g. a picture, a video, a console
output etc...) make sure to make it start with this string. It will not only help to ensure
purity, but it also allows us to garbage collect useless files easily.

e __ROBEXT_WAY_BACK__ contains the path to go back to the main project from the cache folder,
like ../ (internally it is equals to the expanded value of \robExtPrefixPathWayBack).

46

e __ROBEXT_CACHE_FOLDER__ contains the path to the cache folder. Since most commands are
run from the cache folder, this should not be really useful to the user.

You can also use these placeholders to customize the default include function:

e __ROBEXT_INCLUDEGRAPHICS_OPTIONS_
when loading the pdf

contains the options given to \includegraphics

e __ROBEXT_INCLUDEGRAPHICS_FILE__ contains the file loaded by \includegraphics, de-
faults to \robExtAddCachePathAndName{\robExtFinalHash.pdf}, that is itself equivalent
to __ROBEXT_CACHE_FOLDER____ROBEXT_QUTPUT_PDF__ or
__ROBEXT_CACHE_FOLDER ROBEXT_OUTPUT_PREFIX__.pdf.

4.5.2 Placeholders related to ITEX

Some placeholders are reserved only when dealing with IATEX code:

e __ROBEXT_LATEX__ is the main entrypoint, containing all the latex template. It internally
calls other placeholders listed below.

e __ROBEXT_LATEX_OPTIONS__: contains the options to compile the document, like adpaper.
Empty by default.

e __ROBEXT_DOCUMENT_CLASS__: contains the class of the document. Defaults to standalone.
e __ROBEXT_PREAMBLE__: contains the preamble. Is empty by default.

e __ROBEXT_MAIN_CONTENT_WRAPPED__: content inside the document environment. It will wrap
the actual content typed by the user __ROBEXT_MAIN_CONTENT__ around a box to compute
its depth. If you do not want this behavior, you can set __ROBEXT_MAIN_CONTENT_WRAPPED__
to be equal to __ROBEXT_MAIN_CONTENT__. It calls internally __ROBEXT_CREATE_OUT_FILE__
and __ROBEXT_WRITE_DEPTH_TO_OUT_FILE__ to do this computation.

e __ROBEXT_CREATE_OUT_FILE__
the handle called \writeRobExt

creates a new file called \ jobname-out.tex and open it in

e __ROBEXT_WRITE_DEPTH_TO_QUT_FILE__ writes the height, depth and width of the box
\boxRobExt into the filed opened in \writeRobExt.

e __ROBEXT_COMPILATION_COMMAND_LATEX__
ment. It uses internally other placeholders:

is the command used to compile a BTEX docu-

e __ROBEXT_LATEX_ENGINE__ is the engine used to compile the document (defaults to
pdflatex)

e __ROBEXT_COMPILATION_COMMAND_OPTIONS__ contains the options used to compile the doc-
ument (defaults to -shell-escape -halt-on-error)
4.5.3 Placeholders related to python

e __ROBEXT_PYTHON_EXEC__ contains the python executable (defaults to python) used to com-
pile

e __ROBEXT_PYTHON__ contains the python template
e __ROBEXT_PYTHON_IMPORT__ can contain import statements

e __ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__ is used to add all the above functions. You

can set it to __ROBEXT_MAIN_CONTENT__ if you do not want them

e __ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__ is called at the end to create the pdf file
even if it is not created, you can set it to the empty string if you do not want to do that.

47

4.5.4 Placeholders related to bash

e __ROBEXT_BASH_TEMPLATE__ contains the bash template. By default, it sets set -e, creates
outputTxt, outputTex and outputPdf pointing to the corresponding files, and it created the
pdf file at the end.

e __ROBEXT_SHELL__ contains the shell (defaults to bash).

4.6 Customize presets and create your own style

Note that you can define your own presets simply by creating a new pgf style (please refer to
tikz-pgf’s documentation for more details). For instance, we defined the tikz style using:

\robExtConfigure{
tikz/.style={
latex,
add to preamble={\usepackage{tikz}},
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{\begin{tikzpicturel}},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{\end{tikzpicturel}},
o
}

in order to automatically load tikz and add the surrounding tikzpicture (note that the
style is always loaded after the definition of __ROBEXT_MAIN_CONTENT__, you can therefore do any
postprocessing you like on this placeholder). You can also customize an existing style by adding
stuff to it using .append style. For instance, here, we add the shadows library to the tikz preset
by default:

See, tikz’s style now packs the shadows library by default: @

\robExtConfigure{

tikz/.append style={

add to preamble={\usetikzlibrary{shadows}},

I
}
See, tikz’s style now packs the |shadows| library by default:
\begin{CacheMe}{tikz} [even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

4.7 Operations on the cache
Every time we compile a document, we create automatically a bunch of files:

e the cache is located by default in the robustExternalize folder. Feel free to remove this
folder if you want to completely clear the cache (but then you need to recompile everything).
See below if you want to clean it in a better way.

e \jobname-robExt-all-figures.txt contains the list of all figures contained in the docu-
ment. Mostly useful to help the script that remove other figures.

e robExt-remove-old-figures.py is a python script that will remove all cached files that
are not used anymore. Just run python robExt-remove-old-figures.py to clean it. You
will then see the list of files that the script wants to remove: make sure it does not remove
any important data, and press “y”. Note that it will search for all files that look like
*xrobExt-all-figures.txt to see the list of pictures that are still in use, and by default it
will only remove the images in the robustExternalize folder that start with robExt-. If
you change the path of the cache or the prefix, edit the script (should not be hard to do).

48

e \jobname-robExt-compile-missing-figures.sh contains a list of commands that you need
to run to compile the images not yet compiled in the cache (this list will only be created if
you enable the manual compilation mode).

e \jobname-robExt-tmp-file-you-can-remove.tmp is a temporary file. Feel free to remove
it.
We go over some of these scripts.
4.7.1 Cleaning the cache

You might want to clean the cache. Of course you can remove all generated files, but if you want
to keep the picture in use in the latest version of the document, we provide a python script (auto-
matically generated in the root folder) to do this. Just install python3 and run:

python3 robExt-remove-old-figures.py

(on windows, the executable might be called python) You will then be prompted for a confir-
mation after providing the list of files that will be removed.

4.7.2 Listing all figures in use

After the compilation of the document, a file robExt-all-figures.txt is created with the list of
the .tex file of all figures used in the current document.

4.7.3 Manually compiling the figures
When enabling the manual mode (useful if we don’t want to enable -shell-escape):

\robExtConfigure{
enable manual mode

}

the library creates a file JOBNAME-robExt-compile-missing-figures.sh that contains the
instructions to build the figures that are not yet in the cache (each line contains the compilation
command to run). On Linux (or on Windows with bash/cygwin/... installed, it possibly even
work out of the box without) you can easily execute them using:

bash JOBNAME-robExt-compile-missing-figures.sh

4.8 How to debug

If for some reasons you are unable to understand why a build fails, first check if you compiled your
document with -shell-escape (not that this must appear before the filename). Then, you can
look at the log file to get more advices: when a cached document is compiled, we always write the
full compilation command before compiling the file in the log file. This way, you can easily check
the content of the file and see why it fails to compile. The compilation errors are also displayed
directly in the output.

You might often get an error ! Missing $ inserted.: this is typically when a place-
holder was left unreplaced (e.g. you forgot to define it, or you forgot to wrap a command in
\evalPlaceholder{}): since IXTEX is asked to typeset __something__, it thinks that you are
trying to write a subscript, and asks you to start first the math mode.

5 TODO and known bugs:

e See how to deal with label and references inside pictures (without disabling externalization).
e We should create more pre-made settings, e.g. for tikz-cd, zx-calculus etc.

e Deal with remember picture

49

6 Acknowledgments

I am deeply indebted to many users on tex.stackexchange.com that made the writing of this
library possible. I can’t list you all, but thank you so much!

50

tex.stackexchange.com

	A taste of this library
	Introduction
	Why do I need to cache (a.k.a. externalize) parts of my document?
	Why not using TikZ's externalize library?
	FAQ

	Quickstart
	Installation
	Caching a tikz picture
	Custom preamble
	Dependencies
	Disabling externalization
	Feeding data from the main document to the picture
	Feeding data back into the main document
	For non-LaTeX code
	Python code
	Other languages

	Documentation
	How it works
	Placeholders
	Reading a placeholder
	List and debug placeholders
	Setting a value to a placeholder

	Caching a content
	Basics
	Options to configure the template
	Options to configure the compilation command
	Options to configure the inclusion command
	Configuration of the cache
	Customize or disable externalization
	Dependencies
	Pass compiled file to another template

	Default presets
	All languages
	LaTeX
	Python
	Bash
	Verbatim text

	List of special placeholders and presets
	Generic placeholders
	Placeholders related to LaTeX
	Placeholders related to python
	Placeholders related to bash

	Customize presets and create your own style
	Operations on the cache
	Cleaning the cache
	Listing all figures in use
	Manually compiling the figures

	How to debug

	TODO and known bugs:
	Acknowledgments

