The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

BFI: Bayesian Federated Inference

The Bayesian Federated Inference ('BFI') method combines inference results obtained from local data sets in the separate centers. In this version of the package, the 'BFI' methodology is programmed for linear, logistic and survival regression models. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for survival models, see Pazira, Massa, Weijers, Coolen and Jonker (2024) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous populations, see Jonker, Pazira and Coolen (2024) <doi:10.48550/arXiv.2402.02898>.

Version: 2.0.1
Depends: R (≥ 2.10)
Imports: stats
Suggests: knitr, rmarkdown, roxygen2, devtools, spelling, testthat (≥ 3.0.0)
Published: 2024-07-04
DOI: 10.32614/CRAN.package.BFI
Author: Hassan Pazira ORCID iD [aut, cre], Emanuele Massa ORCID iD [aut], Marianne A. Jonker ORCID iD [aut]
Maintainer: Hassan Pazira <hassan.pazira at radboudumc.nl>
License: MIT + file LICENSE
URL: https://hassanpazira.github.io/BFI/
NeedsCompilation: no
Language: en-US
Citation: BFI citation info
Materials: README NEWS
CRAN checks: BFI results

Documentation:

Reference manual: BFI.pdf
Vignettes: An Introduction to BFI
Calling BFI from Python
Using BFI in SAS

Downloads:

Package source: BFI_2.0.1.tar.gz
Windows binaries: r-devel: BFI_2.0.1.zip, r-release: BFI_2.0.1.zip, r-oldrel: BFI_2.0.1.zip
macOS binaries: r-release (arm64): BFI_2.0.1.tgz, r-oldrel (arm64): BFI_2.0.1.tgz, r-release (x86_64): BFI_2.0.1.tgz, r-oldrel (x86_64): BFI_2.0.1.tgz
Old sources: BFI archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BFI to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.