The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

MoTBFs: Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions

Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) <doi:10.1007/978-3-319-20807-7_36>; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) <doi:10.1016/j.ijar.2013.09.012>; I. Pérez-Bernabé, A. Fernández, R. Rumí, A. Salmerón (2016) <doi:10.1007/s10618-015-0429-7>). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called 'motbf' and 'jointmotbf'.

Version: 1.4.1
Depends: R (≥ 3.2.0)
Imports: quadprog, lpSolve, bnlearn, methods, ggm, Matrix
Published: 2022-04-18
DOI: 10.32614/CRAN.package.MoTBFs
Author: Inmaculada Pérez-Bernabé, Antonio Salmerón, Thomas D. Nielsen, Ana D. Maldonado
Maintainer: Ana D. Maldonado <ana.d.maldonado at ual.es>
License: LGPL-3
NeedsCompilation: yes
CRAN checks: MoTBFs results

Documentation:

Reference manual: MoTBFs.pdf

Downloads:

Package source: MoTBFs_1.4.1.tar.gz
Windows binaries: r-devel: MoTBFs_1.4.1.zip, r-release: MoTBFs_1.4.1.zip, r-oldrel: MoTBFs_1.4.1.zip
macOS binaries: r-release (arm64): MoTBFs_1.4.1.tgz, r-oldrel (arm64): MoTBFs_1.4.1.tgz, r-release (x86_64): MoTBFs_1.4.1.tgz, r-oldrel (x86_64): MoTBFs_1.4.1.tgz
Old sources: MoTBFs archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=MoTBFs to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.