The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

RBF: Robust Backfitting

A robust backfitting algorithm for additive models based on (robust) local polynomial kernel smoothers. It includes both bounded and re-descending (kernel) M-estimators, and it computes predictions for points outside the training set if desired. See Boente, Martinez and Salibian-Barrera (2017) <doi:10.1080/10485252.2017.1369077> and Martinez and Salibian-Barrera (2021) <doi:10.21105/joss.02992> for details.

Version: 2.1.1
Imports: stats, graphics
Suggests: knitr, rmarkdown, gam, RobStatTM, MASS
Published: 2023-08-31
DOI: 10.32614/CRAN.package.RBF
Author: Matias Salibian-Barrera [aut, cre], Alejandra Martinez [aut]
Maintainer: Matias Salibian-Barrera <matias at stat.ubc.ca>
License: GPL (≥ 3.0)
NeedsCompilation: yes
Materials: NEWS
CRAN checks: RBF results

Documentation:

Reference manual: RBF.pdf
Vignettes: Examples (source, R code)

Downloads:

Package source: RBF_2.1.1.tar.gz
Windows binaries: r-devel: RBF_2.1.1.zip, r-release: RBF_2.1.1.zip, r-oldrel: RBF_2.1.1.zip
macOS binaries: r-release (arm64): RBF_2.1.1.tgz, r-oldrel (arm64): RBF_2.1.1.tgz, r-release (x86_64): RBF_2.1.1.tgz, r-oldrel (x86_64): RBF_2.1.1.tgz
Old sources: RBF archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RBF to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.