The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

RandomForestsGLS: Random Forests for Dependent Data

Fits non-linear regression models on dependant data with Generalised Least Square (GLS) based Random Forest (RF-GLS) detailed in Saha, Basu and Datta (2021) <doi:10.1080/01621459.2021.1950003>.

Version: 0.1.5
Depends: R (≥ 3.3.0)
Imports: BRISC, parallel, stats, matrixStats, randomForest, pbapply
Suggests: knitr, rmarkdown, ggplot2, testthat (≥ 2.1.0)
Published: 2024-10-02
DOI: 10.32614/CRAN.package.RandomForestsGLS
Author: Arkajyoti Saha [aut, cre], Sumanta Basu [aut], Abhirup Datta [aut]
Maintainer: Arkajyoti Saha <arkajyotisaha93 at gmail.com>
BugReports: https://github.com/ArkajyotiSaha/RandomForestsGLS/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/ArkajyotiSaha/RandomForestsGLS
NeedsCompilation: yes
CRAN checks: RandomForestsGLS results

Documentation:

Reference manual: RandomForestsGLS.pdf
Vignettes: How to use RandomForestsGLS (source, R code)

Downloads:

Package source: RandomForestsGLS_0.1.5.tar.gz
Windows binaries: r-devel: RandomForestsGLS_0.1.5.zip, r-release: RandomForestsGLS_0.1.5.zip, r-oldrel: RandomForestsGLS_0.1.5.zip
macOS binaries: r-release (arm64): RandomForestsGLS_0.1.5.tgz, r-oldrel (arm64): RandomForestsGLS_0.1.5.tgz, r-release (x86_64): RandomForestsGLS_0.1.5.tgz, r-oldrel (x86_64): RandomForestsGLS_0.1.5.tgz
Old sources: RandomForestsGLS archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RandomForestsGLS to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.