The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

STAREG: An Empirical Bayes Approach for Replicability Analysis Across Two Studies

A robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2023), <https://www.biorxiv.org/content/10.1101/2023.05.30.542607v1>].

Version: 1.0.3
Depends: Rcpp (≥ 1.0.9), qvalue
LinkingTo: Rcpp, RcppArmadillo
Published: 2023-08-15
DOI: 10.32614/CRAN.package.STAREG
Author: Yan Li [aut, cre, cph], Xiang Zhou [aut], Rui Chen [aut], Xianyang Zhang [aut], Hongyuan Cao [aut, ctb]
Maintainer: Yan Li <yanli_ at jlu.edu.cn>
License: GPL-3
NeedsCompilation: yes
CRAN checks: STAREG results

Documentation:

Reference manual: STAREG.pdf

Downloads:

Package source: STAREG_1.0.3.tar.gz
Windows binaries: r-devel: STAREG_1.0.3.zip, r-release: STAREG_1.0.3.zip, r-oldrel: STAREG_1.0.3.zip
macOS binaries: r-release (arm64): STAREG_1.0.3.tgz, r-oldrel (arm64): STAREG_1.0.3.tgz, r-release (x86_64): STAREG_1.0.3.tgz, r-oldrel (x86_64): STAREG_1.0.3.tgz
Old sources: STAREG archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=STAREG to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.