The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

SpaTopic: Topic Inference to Identify Tissue Architecture in Multiplexed Images

A novel spatial topic model to integrate both cell type and spatial information to identify the complex spatial tissue architecture on multiplexed tissue images without human intervention. The Package implements a collapsed Gibbs sampling algorithm for inference. 'SpaTopic' is scalable to large-scale image datasets without extracting neighborhood information for every single cell. For more details on the methodology, see <https://xiyupeng.github.io/SpaTopic/>.

Version: 1.1.0
Depends: R (≥ 3.5.0)
Imports: Rcpp (≥ 0.12.0), RANN (≥ 2.6.0), sf (≥ 1.0-12), methods (≥ 3.4), foreach (≥ 1.5.0), iterators (≥ 1.0)
LinkingTo: Rcpp, RcppArmadillo, RcppProgress
Suggests: knitr, rmarkdown, SeuratObject (≥ 4.9.9.9086), doParallel (≥ 1.0)
Published: 2024-04-22
DOI: 10.32614/CRAN.package.SpaTopic
Author: Xiyu Peng ORCID iD [aut, cre]
Maintainer: Xiyu Peng <pansypeng124 at gmail.com>
BugReports: https://github.com/xiyupeng/SpaTopic/issues
License: GPL (≥ 3)
URL: https://github.com/xiyupeng/SpaTopic
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: SpaTopic results

Documentation:

Reference manual: SpaTopic.pdf
Vignettes: SpaTopic Basics (source, R code)

Downloads:

Package source: SpaTopic_1.1.0.tar.gz
Windows binaries: r-devel: SpaTopic_1.1.0.zip, r-release: SpaTopic_1.1.0.zip, r-oldrel: SpaTopic_1.1.0.zip
macOS binaries: r-release (arm64): SpaTopic_1.1.0.tgz, r-oldrel (arm64): SpaTopic_1.1.0.tgz, r-release (x86_64): SpaTopic_1.1.0.tgz, r-oldrel (x86_64): SpaTopic_1.1.0.tgz
Old sources: SpaTopic archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SpaTopic to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.