The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

fipp: Induced Priors in Bayesian Mixture Models

Computes implicitly induced quantities from prior/hyperparameter specifications of three Mixtures of Finite Mixtures models: Dirichlet Process Mixtures (DPMs; Escobar and West (1995) <doi:10.1080/01621459.1995.10476550>), Static Mixtures of Finite Mixtures (Static MFMs; Miller and Harrison (2018) <doi:10.1080/01621459.2016.1255636>), and Dynamic Mixtures of Finite Mixtures (Dynamic MFMs; Frühwirth-Schnatter, Malsiner-Walli and Grün (2020) <doi:10.48550/arXiv.2005.09918>). For methodological details, please refer to Greve, Grün, Malsiner-Walli and Frühwirth-Schnatter (2020) <doi:10.48550/arXiv.2012.12337>) as well as the package vignette.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: Rcpp, stats, matrixStats
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown
Published: 2021-02-11
DOI: 10.32614/CRAN.package.fipp
Author: Jan Greve [aut, cre], Bettina Grün ORCID iD [ctb], Gertraud Malsiner-Walli ORCID iD [ctb], Sylvia Frühwirth-Schnatter ORCID iD [ctb]
Maintainer: Jan Greve <jan.greve at wu.ac.at>
License: GPL-2
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: fipp results

Documentation:

Reference manual: fipp.pdf
Vignettes: fipp Crash Course

Downloads:

Package source: fipp_1.0.0.tar.gz
Windows binaries: r-devel: fipp_1.0.0.zip, r-release: fipp_1.0.0.zip, r-oldrel: fipp_1.0.0.zip
macOS binaries: r-release (arm64): fipp_1.0.0.tgz, r-oldrel (arm64): fipp_1.0.0.tgz, r-release (x86_64): fipp_1.0.0.tgz, r-oldrel (x86_64): fipp_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fipp to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.