The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

hdiVAR: Statistical Inference for Noisy Vector Autoregression

The model is high-dimensional vector autoregression with measurement error, also known as linear gaussian state-space model. Provable sparse expectation-maximization algorithm is provided for the estimation of transition matrix and noise variances. Global and simultaneous testings are implemented for transition matrix with false discovery rate control. For more information, see the accompanying paper: Lyu, X., Kang, J., & Li, L. (2023). "Statistical inference for high-dimensional vector autoregression with measurement error", Statistica Sinica.

Version: 1.0.2
Depends: R (≥ 3.1)
Imports: lpSolve, abind
Suggests: knitr, rmarkdown
Published: 2023-05-14
DOI: 10.32614/CRAN.package.hdiVAR
Author: Xiang Lyu [aut, cre], Jian Kang [aut], Lexin Li [aut]
Maintainer: Xiang Lyu <xianglyu.public at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: hdiVAR results

Documentation:

Reference manual: hdiVAR.pdf
Vignettes: hdiVAR

Downloads:

Package source: hdiVAR_1.0.2.tar.gz
Windows binaries: r-devel: hdiVAR_1.0.2.zip, r-release: hdiVAR_1.0.2.zip, r-oldrel: hdiVAR_1.0.2.zip
macOS binaries: r-release (arm64): hdiVAR_1.0.2.tgz, r-oldrel (arm64): hdiVAR_1.0.2.tgz, r-release (x86_64): hdiVAR_1.0.2.tgz, r-oldrel (x86_64): hdiVAR_1.0.2.tgz
Old sources: hdiVAR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=hdiVAR to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.