The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

hetGP: Heteroskedastic Gaussian Process Modeling and Design under Replication

Performs Gaussian process regression with heteroskedastic noise following the model by Binois, M., Gramacy, R., Ludkovski, M. (2016) <doi:10.48550/arXiv.1611.05902>, with implementation details in Binois, M. & Gramacy, R. B. (2021) <doi:10.18637/jss.v098.i13>. The input dependent noise is modeled as another Gaussian process. Replicated observations are encouraged as they yield computational savings. Sequential design procedures based on the integrated mean square prediction error and lookahead heuristics are provided, and notably fast update functions when adding new observations.

Version: 1.1.7
Depends: R (≥ 2.10)
Imports: Rcpp (≥ 0.12.3), MASS, methods, DiceDesign
LinkingTo: Rcpp
Suggests: knitr, monomvn, lhs, colorspace
Published: 2024-09-04
DOI: 10.32614/CRAN.package.hetGP
Author: Mickael Binois [aut, cre], Robert B. Gramacy [aut]
Maintainer: Mickael Binois <mickael.binois at inria.fr>
License: LGPL-2 | LGPL-2.1 | LGPL-3 [expanded from: LGPL]
NeedsCompilation: yes
Citation: hetGP citation info
Materials: NEWS
CRAN checks: hetGP results

Documentation:

Reference manual: hetGP.pdf
Vignettes: a guide to the hetGP package (source, R code)

Downloads:

Package source: hetGP_1.1.7.tar.gz
Windows binaries: r-devel: hetGP_1.1.7.zip, r-release: hetGP_1.1.7.zip, r-oldrel: hetGP_1.1.7.zip
macOS binaries: r-release (arm64): hetGP_1.1.7.tgz, r-oldrel (arm64): hetGP_1.1.7.tgz, r-release (x86_64): hetGP_1.1.7.tgz, r-oldrel (x86_64): hetGP_1.1.7.tgz
Old sources: hetGP archive

Reverse dependencies:

Reverse imports: activegp, quantkriging

Linking:

Please use the canonical form https://CRAN.R-project.org/package=hetGP to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.