The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

rdacca.hp: Hierarchical and Variation Partitioning for Canonical Analysis

This function conducts variation partitioning and hierarchical partitioning to calculate the unique, shared (referred as to "common") and individual contributions of each predictor (or matrix) towards explained variation (R-square and adjusted R-square) on canonical analysis (RDA,CCA and db-RDA), applying the algorithm of Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13: 782-788 <doi:10.1111/2041-210X.13800>.

Version: 1.1-1
Depends: R (≥ 3.4.0), vegan, ggplot2
Published: 2024-08-24
DOI: 10.32614/CRAN.package.rdacca.hp
Author: Jiangshan Lai ORCID iD [aut, cre], Kim Nimon [aut], Yao Liu [aut], Pedro Peres-Neto [aut]
Maintainer: Jiangshan Lai <lai at njfu.edu.cn>
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/laijiangshan/rdacca.hp
NeedsCompilation: no
Citation: rdacca.hp citation info
CRAN checks: rdacca.hp results

Documentation:

Reference manual: rdacca.hp.pdf

Downloads:

Package source: rdacca.hp_1.1-1.tar.gz
Windows binaries: r-devel: rdacca.hp_1.1-1.zip, r-release: rdacca.hp_1.1-1.zip, r-oldrel: rdacca.hp_1.1-1.zip
macOS binaries: r-release (arm64): rdacca.hp_1.1-1.tgz, r-oldrel (arm64): rdacca.hp_1.1-1.tgz, r-release (x86_64): rdacca.hp_1.1-1.tgz, r-oldrel (x86_64): rdacca.hp_1.1-1.tgz
Old sources: rdacca.hp archive

Reverse dependencies:

Reverse imports: UpSetVP

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rdacca.hp to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.