The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

rjmcmc: Reversible-Jump MCMC Using Post-Processing

Performs reversible-jump Markov chain Monte Carlo (Green, 1995) <doi:10.2307/2337340>, specifically the restriction introduced by Barker & Link (2013) <doi:10.1080/00031305.2013.791644>. By utilising a 'universal parameter' space, RJMCMC is treated as a Gibbs sampling problem. Previously-calculated posterior distributions are used to quickly estimate posterior model probabilities. Jacobian matrices are found using automatic differentiation. For a detailed description of the package, see Gelling, Schofield & Barker (2019) <doi:10.1111/anzs.12263>.

Version: 0.4.5
Depends: madness, R (≥ 3.2.0)
Imports: utils, coda, mvtnorm
Suggests: FSAdata
Published: 2019-07-09
DOI: 10.32614/CRAN.package.rjmcmc
Author: Nick Gelling [aut, cre], Matthew R. Schofield [aut], Richard J. Barker [aut]
Maintainer: Nick Gelling <nickcjgelling at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: rjmcmc results

Documentation:

Reference manual: rjmcmc.pdf

Downloads:

Package source: rjmcmc_0.4.5.tar.gz
Windows binaries: r-devel: rjmcmc_0.4.5.zip, r-release: rjmcmc_0.4.5.zip, r-oldrel: rjmcmc_0.4.5.zip
macOS binaries: r-release (arm64): rjmcmc_0.4.5.tgz, r-oldrel (arm64): rjmcmc_0.4.5.tgz, r-release (x86_64): rjmcmc_0.4.5.tgz, r-oldrel (x86_64): rjmcmc_0.4.5.tgz
Old sources: rjmcmc archive

Reverse dependencies:

Reverse imports: BayesOrdDesign

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rjmcmc to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.