The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

sparsediscrim: Sparse and Regularized Discriminant Analysis

A collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <doi:10.48550/arXiv.1602.01182>. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.

Version: 0.3.0
Depends: R (≥ 2.10)
Imports: bdsmatrix, corpcor, dplyr, ggplot2, mvtnorm, rlang
Suggests: testthat, MASS, covr, modeldata, spelling
Published: 2021-07-01
DOI: 10.32614/CRAN.package.sparsediscrim
Author: Max Kuhn ORCID iD [aut, cre], John Ramey [aut] (original author)
Maintainer: Max Kuhn <mxkuhn at gmail.com>
License: MIT + file LICENSE
URL: https://github.com/topepo/sparsediscrim, https://topepo.github.io/sparsediscrim/
NeedsCompilation: no
Language: en-US
Materials: README NEWS
CRAN checks: sparsediscrim results

Documentation:

Reference manual: sparsediscrim.pdf

Downloads:

Package source: sparsediscrim_0.3.0.tar.gz
Windows binaries: r-devel: sparsediscrim_0.3.0.zip, r-release: sparsediscrim_0.3.0.zip, r-oldrel: sparsediscrim_0.3.0.zip
macOS binaries: r-release (arm64): sparsediscrim_0.3.0.tgz, r-oldrel (arm64): sparsediscrim_0.3.0.tgz, r-release (x86_64): sparsediscrim_0.3.0.tgz, r-oldrel (x86_64): sparsediscrim_0.3.0.tgz
Old sources: sparsediscrim archive

Reverse dependencies:

Reverse suggests: discrim, tidyAML

Linking:

Please use the canonical form https://CRAN.R-project.org/package=sparsediscrim to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.