The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
A collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <doi:10.48550/arXiv.1602.01182>. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.
Version: | 0.3.0 |
Depends: | R (≥ 2.10) |
Imports: | bdsmatrix, corpcor, dplyr, ggplot2, mvtnorm, rlang |
Suggests: | testthat, MASS, covr, modeldata, spelling |
Published: | 2021-07-01 |
DOI: | 10.32614/CRAN.package.sparsediscrim |
Author: | Max Kuhn [aut, cre], John Ramey [aut] (original author) |
Maintainer: | Max Kuhn <mxkuhn at gmail.com> |
License: | MIT + file LICENSE |
URL: | https://github.com/topepo/sparsediscrim, https://topepo.github.io/sparsediscrim/ |
NeedsCompilation: | no |
Language: | en-US |
Materials: | README NEWS |
CRAN checks: | sparsediscrim results |
Reference manual: | sparsediscrim.pdf |
Package source: | sparsediscrim_0.3.0.tar.gz |
Windows binaries: | r-devel: sparsediscrim_0.3.0.zip, r-release: sparsediscrim_0.3.0.zip, r-oldrel: sparsediscrim_0.3.0.zip |
macOS binaries: | r-release (arm64): sparsediscrim_0.3.0.tgz, r-oldrel (arm64): sparsediscrim_0.3.0.tgz, r-release (x86_64): sparsediscrim_0.3.0.tgz, r-oldrel (x86_64): sparsediscrim_0.3.0.tgz |
Old sources: | sparsediscrim archive |
Reverse suggests: | discrim, tidyAML |
Please use the canonical form https://CRAN.R-project.org/package=sparsediscrim to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.