CRAN Package Check Results for Maintainer ‘Christophe Regouby <christophe.regouby at free.fr>’

Last updated on 2025-03-23 15:50:58 CET.

Package ERROR NOTE OK
microinverterdata 7 8
tabnet 5 10

Package microinverterdata

Current CRAN status: NOTE: 7, OK: 8

Version: 0.2.0
Check: DESCRIPTION meta-information
Result: NOTE Missing dependency on R >= 4.1.0 because package code uses the pipe |> or function shorthand \(...) syntax added in R 4.1.0. File(s) using such syntax: ‘get_alarm.R’ ‘get_device_info.R’ ‘get_output_data.R’ ‘query_device.R’ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-macos-x86_64, r-devel-windows-x86_64, r-patched-linux-x86_64

Package tabnet

Current CRAN status: ERROR: 5, OK: 10

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed autoplot.tabnet_explain 34.858 0.677 39.877 tabnet_fit 27.887 0.274 34.412 autoplot.tabnet_fit 26.385 0.369 28.816 tabnet 15.346 0.235 16.577 tabnet_explain 13.603 0.111 14.888 Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed tabnet_fit 29.549 0.077 29.086 autoplot.tabnet_explain 27.541 0.579 25.403 autoplot.tabnet_fit 24.431 0.146 18.250 tabnet_explain 18.454 0.016 13.712 tabnet 13.047 0.140 10.341 Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘tabnet-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tabnet_pretrain > ### Title: Tabnet model > ### Aliases: tabnet_pretrain tabnet_pretrain.default > ### tabnet_pretrain.data.frame tabnet_pretrain.formula > ### tabnet_pretrain.recipe tabnet_pretrain.Node > > ### ** Examples > > ## Don't show: > if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data("ames", package = "modeldata") + pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) + ## Don't show: + }) # examplesIf > data("ames", package = "modeldata") > pretrained <- tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) Error in `value_error()`: ! Can't convert data of class: 'NULL' Backtrace: ▆ 1. ├─(if (getRversion() >= "3.4") withAutoprint else force)(...) 2. │ └─base::source(...) 3. │ ├─base::withVisible(eval(ei, envir)) 4. │ └─base::eval(ei, envir) 5. │ └─base::eval(ei, envir) 6. ├─tabnet::tabnet_pretrain(Sale_Price ~ ., data = ames, epochs = 1) 7. └─tabnet:::tabnet_pretrain.formula(...) 8. └─tabnet:::tabnet_bridge(...) 9. └─tabnet:::tabnet_train_unsupervised(...) 10. ├─coro::loop(...) 11. │ └─rlang::eval_bare(loop, env) 12. └─coro (local) `<fn>`() 13. ├─coro::is_exhausted(elt <<- iterator()) 14. ├─elt <<- iterator() 15. │ └─rlang::env_poke(env, lhs, value, inherit = TRUE, create = FALSE) 16. └─torch (local) iterator() 17. └─torch::dataloader_next(iter, coro::exhausted()) 18. └─iter$.next() 19. └─self$.next_data() 20. └─self$.dataset_fetcher$fetch(index) 21. └─self$collate_fn(data) 22. └─base::lapply(data, utils_data_default_convert) 23. └─torch (local) FUN(X[[i]], ...) 24. └─base::tryCatch(...) 25. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 26. └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 27. └─value[[3L]](cond) 28. └─torch:::value_error("Can't convert data of class: '{class(data)}'") 29. └─rlang::abort(glue::glue(gettext(...)[[1]], .envir = env), class = "value_error") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed autoplot.tabnet_explain 33.616 0.974 37.185 tabnet_fit 27.461 0.204 32.353 autoplot.tabnet_fit 20.075 0.306 20.586 tabnet 13.704 0.234 14.212 tabnet_explain 11.412 0.108 12.836 Flavor: r-patched-linux-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.