Last updated on 2025-02-16 08:51:34 CET.
Package | ERROR | OK |
---|---|---|
autonewsmd | 15 | |
BiasCorrector | 15 | |
DQAgui | 15 | |
DQAstats | 15 | |
kdry | 15 | |
mlexperiments | 15 | |
mllrnrs | 1 | 14 |
mlsurvlrnrs | 15 | |
rBiasCorrection | 15 | |
sjtable2df | 1 | 14 |
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: ERROR: 1, OK: 14
Version: 0.0.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [3m/90m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(mllrnrs)
>
> test_check("mllrnrs")
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 39.869 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 5.936 seconds
3) Running FUN 2 times in 2 thread(s)... 2.557 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 45.222 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 7.177 seconds
3) Running FUN 2 times in 2 thread(s)... 3.357 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 40.263 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 5.793 seconds
3) Running FUN 2 times in 2 thread(s)... 3.092 seconds
CV fold: Fold1
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 101.972 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 13.538 seconds
3) Running FUN 2 times in 2 thread(s)... 16.396 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 116.464 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 14.185 seconds
3) Running FUN 2 times in 2 thread(s)... 16.327 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 113.363 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 12.536 seconds
3) Running FUN 2 times in 2 thread(s)... 19.676 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 44.658 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 6.944 seconds
3) Running FUN 2 times in 2 thread(s)... 3.023 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 37.296 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 6.179 seconds
3) Running FUN 2 times in 2 thread(s)... 2.67 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 39.402 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 6.238 seconds
3) Running FUN 2 times in 2 thread(s)... 2.396 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 40.932 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 109.968 seconds
3) Running FUN 2 times in 2 thread(s)... 3.099 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 42.189 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 90.98 seconds
3) Running FUN 2 times in 2 thread(s)... 3.208 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 40.439 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 130.392 seconds
3) Running FUN 2 times in 2 thread(s)... 3.188 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 47.985 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 319.009 seconds
3) Running FUN 2 times in 2 thread(s)... 4.758 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 48.606 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 110.149 seconds
3) Running FUN 2 times in 2 thread(s)... 7.936 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 48.715 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 125.308 seconds
3) Running FUN 2 times in 2 thread(s)... 7.158 seconds
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 55.022 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 131.021 seconds
3) Running FUN 2 times in 2 thread(s)... 3.641 seconds
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 46.074 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 185.874 seconds
3) Running FUN 2 times in 2 thread(s)... 3.864 seconds
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 42.219 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 170.586 seconds
3) Running FUN 2 times in 2 thread(s)... 4.403 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 47.322 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 91.985 seconds
3) Running FUN 2 times in 2 thread(s)... 6.442 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 73.771 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 19.363 seconds
3) Running FUN 2 times in 2 thread(s)... 7.981 seconds
Errors encountered in FUN
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 49.447 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 95.99 seconds
3) Running FUN 2 times in 2 thread(s)... 5.463 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 103.355 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 22.731 seconds
3) Running FUN 2 times in 2 thread(s)... 14.184 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 94.866 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 21.651 seconds
3) Running FUN 2 times in 2 thread(s)... 9.671 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 96.502 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 22.847 seconds
3) Running FUN 2 times in 2 thread(s)... 22.339 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 42.194 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 10.983 seconds
3) Running FUN 2 times in 2 thread(s)... 3.25 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 45.231 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 11.599 seconds
3) Running FUN 2 times in 2 thread(s)... 3.05 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 38.563 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 12.599 seconds
3) Running FUN 2 times in 2 thread(s)... 3.336 seconds
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 33.343 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 82.326 seconds
3) Running FUN 2 times in 2 thread(s)... 2.814 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 30.596 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 61.618 seconds
3) Running FUN 2 times in 2 thread(s)... 2.747 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 35.312 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 112.838 seconds
3) Running FUN 2 times in 2 thread(s)... 3.309 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 60.211 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 101.816 seconds
3) Running FUN 2 times in 2 thread(s)... 9.594 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 49.067 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 99.722 seconds
3) Running FUN 2 times in 2 thread(s)... 8.688 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 49.212 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 108.857 seconds
3) Running FUN 2 times in 2 thread(s)... 11.258 seconds
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 31.778 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search...
Timing stopped at: 0.123 0.005 38.75
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Current CRAN status: OK: 15
Current CRAN status: OK: 15
Current CRAN status: ERROR: 1, OK: 14
Version: 0.0.3
Check: tests
Result: ERROR
Running 'testthat.R' [10s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> library(testthat)
> library(sjtable2df)
>
> test_check("sjtable2df")
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
[ FAIL 1 | WARN 5 | SKIP 5 | PASS 18 ]
══ Skipped tests (5) ═══════════════════════════════════════════════════════════
• On CRAN (5): 'test-mtab2df.R:48:5', 'test-mtab2df.R:136:5',
'test-xtab2df.R:36:5', 'test-xtab2df.R:206:5', 'test-xtab2df.R:253:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Failure ('test-mtab2df.R:134:5'): correct functioning of mtab2df: glmer ─────
nrow(final_tab) == 10 is not TRUE
`actual`: FALSE
`expected`: TRUE
[ FAIL 1 | WARN 5 | SKIP 5 | PASS 18 ]
Error: Test failures
Execution halted
Flavor: r-oldrel-windows-x86_64
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.