The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

PatientLevelPrediction: Develop Clinical Prediction Models Using the Common Data Model

A user friendly way to create patient level prediction models using the Observational Medical Outcomes Partnership Common Data Model. Given a cohort of interest and an outcome of interest, the package can use data in the Common Data Model to build a large set of features. These features can then be used to fit a predictive model with a number of machine learning algorithms. This is further described in Reps (2017) <doi:10.1093/jamia/ocy032>.

Version: 6.4.0
Depends: R (≥ 4.0.0)
Imports: Andromeda, Cyclops (≥ 3.0.0), DatabaseConnector (≥ 6.0.0), digest, dplyr, FeatureExtraction (≥ 3.0.0), Matrix, memuse, ParallelLogger (≥ 2.0.0), pROC, PRROC, rlang, SqlRender (≥ 1.1.3), tidyr, utils
Suggests: curl, Eunomia (≥ 2.0.0), glmnet, ggplot2, gridExtra, IterativeHardThresholding, knitr, lightgbm, Metrics, mgcv, OhdsiShinyAppBuilder (≥ 1.0.0), parallel, polspline, readr, ResourceSelection, ResultModelManager (≥ 0.2.0), reticulate (≥ 1.30), rmarkdown, RSQLite, scoring, survival, survminer, testthat, withr, xgboost (> 1.3.2.1)
Published: 2025-02-11
DOI: 10.32614/CRAN.package.PatientLevelPrediction
Author: Egill Fridgeirsson [aut, cre], Jenna Reps [aut], Martijn Schuemie [aut], Marc Suchard [aut], Patrick Ryan [aut], Peter Rijnbeek [aut], Observational Health Data Science and Informatics [cph]
Maintainer: Egill Fridgeirsson <e.fridgeirsson at erasmusmc.nl>
BugReports: https://github.com/OHDSI/PatientLevelPrediction/issues
License: Apache License 2.0
URL: https://ohdsi.github.io/PatientLevelPrediction/, https://github.com/OHDSI/PatientLevelPrediction
NeedsCompilation: no
Citation: PatientLevelPrediction citation info
Materials: README NEWS
CRAN checks: PatientLevelPrediction results

Documentation:

Reference manual: PatientLevelPrediction.pdf
Vignettes: Adding Custom Feature Engineering Functions (source, R code)
Adding Custom Patient-Level Prediction Algorithms (source, R code)
Adding Custom Sampling (source, R code)
Adding Custom Data Splitting (source, R code)
Benchmark Tasks (source)
Best Practices (source)
Automatically Build Multiple Patient-Level Predictive Models (source, R code)
Building patient-level predictive models (source, R code)
Clinical Models (source)
Constrained Predictors (source, R code)
Creating Learning Curves (source, R code)
Making patient-level predictive network study packages (source, R code)
Integration of GIS Data Into OHDSI Model Building (source, R code)
Patient-Level Prediction Installation Guide (source, R code)

Downloads:

Package source: PatientLevelPrediction_6.4.0.tar.gz
Windows binaries: r-devel: PatientLevelPrediction_6.4.0.zip, r-release: PatientLevelPrediction_6.4.0.zip, r-oldrel: PatientLevelPrediction_6.4.0.zip
macOS binaries: r-devel (arm64): PatientLevelPrediction_6.4.0.tgz, r-release (arm64): PatientLevelPrediction_6.4.0.tgz, r-oldrel (arm64): PatientLevelPrediction_6.4.0.tgz, r-devel (x86_64): PatientLevelPrediction_6.4.0.tgz, r-release (x86_64): PatientLevelPrediction_6.4.0.tgz, r-oldrel (x86_64): PatientLevelPrediction_6.4.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PatientLevelPrediction to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.