The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
We introduce improved methods for statistically assessing birth seasonality and intra-annual variation. The first method we propose is a new idea that uses a nonparametric clustering procedure to group individuals with similar time series data and estimate birth seasonality based on the clusters. One can use the function SCEM() to implement this method. The second method estimates input parameters for use with a previously-developed parametric approach (Tornero et al., 2013). The relevant code for this approach is makeFits_OLS(), while makeFits_initial() is the code to implement the same method but with given initial conditions for two parameters. The latter can be used to show the disadvantage of the existing approach. One can use the function makeFits() to generate parametric birth seasonality estimates using either initialization. Detailed description can be found here: Chazin Hannah, Soudeep Deb, Joshua Falk, and Arun Srinivasan. (2019) "New Statistical Approaches to Intra-Individual Isotopic Analysis and Modeling Birth Seasonality in Studies of Herd Animals." <doi:10.1111/arcm.12432>.
Version: | 1.1.0 |
Depends: | R (≥ 2.10) |
Imports: | devtools, stats, mathjaxr |
Suggests: | knitr, markdown, rmarkdown, testthat (≥ 3.0.0) |
Published: | 2021-09-02 |
DOI: | 10.32614/CRAN.package.SCEM |
Author: | Hannah Chazin [aut], Soudeep Deb [aut], Joshua Falk [aut], Arun Srinivasan [aut], Kyung Serk Cho [cre] |
Maintainer: | Kyung Serk Cho <kyslf1994 at gmail.com> |
BugReports: | https://github.com/kserkcho/SCEM/issues |
License: | GPL-3 |
URL: | https://github.com/kserkcho/SCEM |
NeedsCompilation: | no |
Citation: | SCEM citation info |
Materials: | README |
CRAN checks: | SCEM results |
Reference manual: | SCEM.pdf |
Vignettes: |
SCEM_example |
Package source: | SCEM_1.1.0.tar.gz |
Windows binaries: | r-devel: SCEM_1.1.0.zip, r-release: SCEM_1.1.0.zip, r-oldrel: SCEM_1.1.0.zip |
macOS binaries: | r-release (arm64): SCEM_1.1.0.tgz, r-oldrel (arm64): SCEM_1.1.0.tgz, r-release (x86_64): SCEM_1.1.0.tgz, r-oldrel (x86_64): SCEM_1.1.0.tgz |
Old sources: | SCEM archive |
Please use the canonical form https://CRAN.R-project.org/package=SCEM to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.