The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

activegp: Gaussian Process Based Design and Analysis for the Active Subspace Method

The active subspace method is a sensitivity analysis technique that finds important linear combinations of input variables for a simulator. This package provides functions allowing estimation of the active subspace without gradient information using Gaussian processes as well as sequential experimental design tools to minimize the amount of data required to do so. Implements Wycoff et al. (JCGS, 2021) <doi:10.48550/arXiv.1907.11572>.

Version: 1.1.1
Depends: R (≥ 3.4.0)
Imports: Rcpp (≥ 0.12.18), hetGP (≥ 1.1.1), lhs, numDeriv, methods, MASS, RcppProgress
LinkingTo: Rcpp, RcppArmadillo, RcppProgress
Suggests: testthat
Published: 2024-05-25
DOI: 10.32614/CRAN.package.activegp
Author: Nathan Wycoff, Mickael Binois
Maintainer: Nathan Wycoff <nathan.wycoff at georgetown.edu>
License: BSD_3_clause + file LICENSE
NeedsCompilation: yes
Materials: NEWS
CRAN checks: activegp results

Documentation:

Reference manual: activegp.pdf

Downloads:

Package source: activegp_1.1.1.tar.gz
Windows binaries: r-devel: activegp_1.1.1.zip, r-release: activegp_1.1.1.zip, r-oldrel: activegp_1.1.1.zip
macOS binaries: r-release (arm64): activegp_1.1.1.tgz, r-oldrel (arm64): activegp_1.1.1.tgz, r-release (x86_64): activegp_1.1.1.tgz, r-oldrel (x86_64): activegp_1.1.1.tgz
Old sources: activegp archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=activegp to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.