The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

lmeresampler: Bootstrap Methods for Nested Linear Mixed-Effects Models

Bootstrap routines for nested linear mixed effects models fit using either 'lme4' or 'nlme'. The provided 'bootstrap()' function implements the parametric, residual, cases, random effect block (REB), and wild bootstrap procedures. An overview of these procedures can be found in Van der Leeden et al. (2008) <doi:10.1007/978-0-387-73186-5_11>, Carpenter, Goldstein & Rasbash (2003) <doi:10.1111/1467-9876.00415>, and Chambers & Chandra (2013) <doi:10.1080/10618600.2012.681216>.

Version: 0.2.4
Depends: R (≥ 3.5.0)
Imports: dplyr (≥ 0.8.0), Matrix, nlmeU, ggplot2, ggdist, HLMdiag, purrr, forcats, stats, statmod, tidyr, magrittr, tibble
Suggests: lme4 (≥ 1.1-7), nlme, testthat, mlmRev, knitr, rmarkdown, doParallel, foreach
Published: 2023-02-11
DOI: 10.32614/CRAN.package.lmeresampler
Author: Adam Loy ORCID iD [aut, cre], Spenser Steele [aut], Jenna Korobova [aut]
Maintainer: Adam Loy <loyad01 at gmail.com>
BugReports: https://github.com/aloy/lmeresampler/issues
License: GPL-3
URL: https://github.com/aloy/lmeresampler
NeedsCompilation: no
Materials: README NEWS
In views: MixedModels
CRAN checks: lmeresampler results

Documentation:

Reference manual: lmeresampler.pdf
Vignettes: lmeresampler-vignette

Downloads:

Package source: lmeresampler_0.2.4.tar.gz
Windows binaries: r-devel: lmeresampler_0.2.4.zip, r-release: lmeresampler_0.2.4.zip, r-oldrel: lmeresampler_0.2.4.zip
macOS binaries: r-release (arm64): lmeresampler_0.2.4.tgz, r-oldrel (arm64): lmeresampler_0.2.4.tgz, r-release (x86_64): lmeresampler_0.2.4.tgz, r-oldrel (x86_64): lmeresampler_0.2.4.tgz
Old sources: lmeresampler archive

Reverse dependencies:

Reverse imports: fastFMM, varTestnlme

Linking:

Please use the canonical form https://CRAN.R-project.org/package=lmeresampler to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.