The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

noisysbmGGM: Noisy Stochastic Block Model for GGM Inference

Greedy Bayesian algorithm to fit the noisy stochastic block model to an observed sparse graph. Moreover, a graph inference procedure to recover Gaussian Graphical Model (GGM) from real data. This procedure comes with a control of the false discovery rate. The method is described in the article "Enhancing the Power of Gaussian Graphical Model Inference by Modeling the Graph Structure" by Kilian, Rebafka, and Villers (2024) <doi:10.48550/arXiv.2402.19021>.

Version: 0.1.2.3
Depends: R (≥ 3.1.0)
Imports: parallel, ppcor, SILGGM, stats, igraph, huge, Rcpp, RcppArmadillo, MASS, RColorBrewer
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown
Published: 2024-03-07
DOI: 10.32614/CRAN.package.noisysbmGGM
Author: Valentin Kilian [aut, cre], Fanny Villers [aut]
Maintainer: Valentin Kilian <valentin.kilian at ens-rennes.fr>
License: GPL-2
NeedsCompilation: yes
CRAN checks: noisysbmGGM results

Documentation:

Reference manual: noisysbmGGM.pdf
Vignettes: User guide for the noisysbmGGM package

Downloads:

Package source: noisysbmGGM_0.1.2.3.tar.gz
Windows binaries: r-devel: noisysbmGGM_0.1.2.3.zip, r-release: noisysbmGGM_0.1.2.3.zip, r-oldrel: noisysbmGGM_0.1.2.3.zip
macOS binaries: r-release (arm64): noisysbmGGM_0.1.2.3.tgz, r-oldrel (arm64): noisysbmGGM_0.1.2.3.tgz, r-release (x86_64): noisysbmGGM_0.1.2.3.tgz, r-oldrel (x86_64): noisysbmGGM_0.1.2.3.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=noisysbmGGM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.