The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

rjaf: Regularized Joint Assignment Forest with Treatment Arm Clustering

Personalized assignment to one of many treatment arms via regularized and clustered joint assignment forests as described in Ladhania, Spiess, Ungar, and Wu (2023) <doi:10.48550/arXiv.2311.00577>. The algorithm pools information across treatment arms: it considers a regularized forest-based assignment algorithm based on greedy recursive partitioning that shrinks effect estimates across arms; and it incorporates a clustering scheme that combines treatment arms with consistently similar outcomes.

Version: 0.1.0
Depends: R (≥ 3.5.0)
Imports: Rcpp, dplyr, tibble, magrittr, readr, randomForest, ranger, forcats, rlang (≥ 1.1.0), tidyr, stringr, MASS
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-11-11
DOI: 10.32614/CRAN.package.rjaf
Author: Wenbo Wu ORCID iD [aut, cph], Xinyi Zhang ORCID iD [aut, cre, cph], Jann Spiess ORCID iD [aut, cph], Rahul Ladhania ORCID iD [aut, cph]
Maintainer: Xinyi Zhang <zhang.xinyi at nyu.edu>
BugReports: https://github.com/wustat/rjaf/issues
License: GPL-3
URL: https://github.com/wustat/rjaf
NeedsCompilation: yes
CRAN checks: rjaf results

Documentation:

Reference manual: rjaf.pdf

Downloads:

Package source: rjaf_0.1.0.tar.gz
Windows binaries: r-devel: rjaf_0.1.0.zip, r-release: rjaf_0.1.0.zip, r-oldrel: rjaf_0.1.0.zip
macOS binaries: r-release (arm64): rjaf_0.1.0.tgz, r-oldrel (arm64): rjaf_0.1.0.tgz, r-release (x86_64): rjaf_0.1.0.tgz, r-oldrel (x86_64): rjaf_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rjaf to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.