The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

ranger: A Fast Implementation of Random Forests

A fast implementation of Random Forests, particularly suited for high dimensional data. Ensembles of classification, regression, survival and probability prediction trees are supported. Data from genome-wide association studies can be analyzed efficiently. In addition to data frames, datasets of class 'gwaa.data' (R package 'GenABEL') and 'dgCMatrix' (R package 'Matrix') can be directly analyzed.

Version: 0.17.0
Depends: R (≥ 3.1)
Imports: Rcpp (≥ 0.11.2), Matrix
LinkingTo: Rcpp, RcppEigen
Suggests: survival, testthat
Published: 2024-11-08
DOI: 10.32614/CRAN.package.ranger
Author: Marvin N. Wright [aut, cre], Stefan Wager [ctb], Philipp Probst [ctb]
Maintainer: Marvin N. Wright <cran at wrig.de>
BugReports: https://github.com/imbs-hl/ranger/issues
License: GPL-3
URL: https://imbs-hl.github.io/ranger/, https://github.com/imbs-hl/ranger
NeedsCompilation: yes
Citation: ranger citation info
Materials: NEWS
In views: MachineLearning, Survival
CRAN checks: ranger results

Documentation:

Reference manual: ranger.pdf

Downloads:

Package source: ranger_0.17.0.tar.gz
Windows binaries: r-devel: ranger_0.17.0.zip, r-release: ranger_0.17.0.zip, r-oldrel: ranger_0.17.0.zip
macOS binaries: r-release (arm64): ranger_0.17.0.tgz, r-oldrel (arm64): ranger_0.17.0.tgz, r-release (x86_64): ranger_0.17.0.tgz, r-oldrel (x86_64): ranger_0.17.0.tgz
Old sources: ranger archive

Reverse dependencies:

Reverse depends: causalweight, Iscores, metaforest, multimedia, OptHoldoutSize, optRF, PKLMtest, RfEmpImp, SPARRAfairness, SpatialML, tuneRanger
Reverse imports: abcrf, ADAPTS, alookr, AmpGram, AmyloGram, AnimalSequences, arf, Bodi, Boruta, C443, CancerGram, CaseBasedReasoning, ClassifyR, collinear, comets, CompositionalML, CornerstoneR, CoxAIPW, crossurr, ddecompose, ddml, discSurv, drpop, dsld, EFAfactors, enmSdmX, fairadapt, flevr, gapclosing, geomod, GRSxE, handwriterRF, hedgedrf, hpiR, htmldf, hypoRF, imanr, influential, Infusion, ipd, MDEI, memoria, meteo, miceRanger, missForestPredict, missRanger, mistyR, MLDataR, MLFS, mlmts, MSiP, multiclassPairs, MUVR2, ocf, OOBCurve, orf, OSTE, outForest, outqrf, phenomis, poolVIM, PrInCE, quantregRanger, radiant.model, randomForestExplainer, RaSEn, RCAS, REMP, rfinterval, RFlocalfdr, RFpredInterval, rfVarImpOOB, rfvimptest, riskRegression, rjaf, rmweather, RNAmodR.ML, RobustPrediction, roseRF, sambia, scDiagnostics, SCORPIUS, SEMdeep, seqimpute, simPop, SISIR, solitude, spatialRF, spFSR, spm, stablelearner, Statial, StratifiedMedicine, subscreen, synthpop, TangledFeatures, text2sdg, tramicp, TSCI, tsensembler, utsf, vaccine, VIM, VIMPS, worcs
Reverse suggests: arenar, autostats, batchtools, biotmle, breakDown, butcher, CALIBERrfimpute, CausalGPS, cdgd, confcons, corrgrapher, cpi, DALEX, DALEXtra, decoupleR, DirectEffects, dlookr, DoubleML, drifter, dynwrap, ENMTools, explainer, fairmodels, familiar, fastshap, finetune, flowml, fmeffects, forestControl, GenericML, HPiP, HPLB, ibawds, iBreakDown, iml, ingredients, innsight, knockoff, lime, lmtp, MachineShop, MantaID, mcboost, micd, mice, miesmuschel, mllrnrs, mlr, mlr3fairness, mlr3learners, mlr3mbo, mlr3pipelines, mlr3shiny, mlr3spatial, mlr3summary, mlr3superlearner, mlr3tuningspaces, mlr3viz, mlrCPO, mlrintermbo, mlsurvlrnrs, modelDown, modelStudio, nestedcv, nlpred, parsnip, pdp, PieGlyph, polle, purge, qeML, r2pmml, RobinCar, SAiVE, sense, shapr, sirus, soilassessment, sperrorest, spmodel, SSLR, stacks, SuperLearner, superMICE, superml, survex, text, tidyAML, tidypredict, tidysdm, topdownr, tree.interpreter, treeshap, triplot, txshift, varImp, vetiver, vimp, viraldomain, viralmodels, vivid, VSURF
Reverse enhances: vip

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ranger to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.