The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.
Version: | 2.19.2 |
Depends: | ParamHelpers (≥ 1.10), R (≥ 3.0.2) |
Imports: | backports (≥ 1.1.0), BBmisc (≥ 1.11), checkmate (≥ 1.8.2), data.table (≥ 1.12.4), ggplot2, methods, parallelMap (≥ 1.3), stats, stringi, survival, utils, XML |
Suggests: | ada, adabag, batchtools, bit64, brnn, bst, C50, care, caret (≥ 6.0-57), class, clue, cluster, ClusterR, clusterSim (≥ 0.44-5), cmaes, cowplot, crs, Cubist, deepnet, DiceKriging, e1071, earth, elasticnet, emoa, evtree, fda.usc, FDboost, FNN, forecast (≥ 8.3), fpc, frbs, FSelector, FSelectorRcpp (≥ 0.3.5), gbm, GenSA, ggpubr, glmnet, GPfit, h2o (≥ 3.6.0.8), Hmisc, irace (≥ 2.0), kernlab, kknn, klaR, knitr, laGP, LiblineaR, lintr (≥ 1.0.0.9001), MASS, mboost, mco, mda, memoise, mlbench, mldr, mlrMBO, modeltools, mRMRe, neuralnet, nnet, numDeriv, pamr, pander, party, pec, penalized (≥ 0.9-47), pls, PMCMRplus, praznik (≥ 5.0.0), randomForest, ranger (≥ 0.8.0), rappdirs, refund, rex, rFerns, rgenoud, rmarkdown, Rmpi, ROCR, rotationForest, rpart, RRF, rsm, RSNNS, rucrdtw, RWeka, sda, sf, smoof, sparseLDA, stepPlr, survAUC, svglite, testthat, tgp, TH.data, tidyr, tsfeatures, vdiffr, wavelets, xgboost (≥ 0.7) |
Published: | 2024-06-12 |
DOI: | 10.32614/CRAN.package.mlr |
Author: | Bernd Bischl [aut], Michel Lang [aut], Lars Kotthoff [aut], Patrick Schratz [aut], Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut], Mason Gallo [aut], Jakob Bossek [ctb], Erich Studerus [ctb], Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb], Florian Fendt [ctb], Philipp Probst [ctb], Xudong Sun [ctb], Janek Thomas [ctb], Bruno Vieira [ctb], Laura Beggel [ctb], Quay Au [ctb], Martin Binder [aut, cre], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb], Alexander Engelhardt [ctb], Christoph Molnar [ctb], Annette Spooner [ctb] |
Maintainer: | Martin Binder <mlr.developer at mb706.com> |
BugReports: | https://github.com/mlr-org/mlr/issues |
License: | BSD_2_clause + file LICENSE |
URL: | https://mlr.mlr-org.com, https://github.com/mlr-org/mlr |
NeedsCompilation: | yes |
SystemRequirements: | gdal (optional), geos (optional), proj (optional), udunits (optional), gsl (optional), gmp (optional), glu (optional), jags (optional), mpfr (optional), openmpi (optional) |
Citation: | mlr citation info |
Materials: | NEWS |
CRAN checks: | mlr results |
Reference manual: | mlr.pdf |
Vignettes: |
mlr |
Package source: | mlr_2.19.2.tar.gz |
Windows binaries: | r-devel: mlr_2.19.2.zip, r-release: mlr_2.19.2.zip, r-oldrel: mlr_2.19.2.zip |
macOS binaries: | r-release (arm64): mlr_2.19.2.tgz, r-oldrel (arm64): mlr_2.19.2.tgz, r-release (x86_64): mlr_2.19.2.tgz, r-oldrel (x86_64): mlr_2.19.2.tgz |
Old sources: | mlr archive |
Reverse depends: | llama, mlrCPO, mlrMBO, OOBCurve, RBPcurve |
Reverse imports: | aslib, EFAfactors, flacco, ipfr, latentFactoR, live, nsga3, RobustPrediction, roseRF, seqimpute, tramnet, tuneRanger, varycoef |
Reverse suggests: | bnclassify, ChemoSpec2D, condvis2, counterfactuals, DALEXtra, ecr, featurefinder, iml, irace, lime, mlrintermbo, OpenML, plotmo, r2pmml, vivid |
Reverse enhances: | vip |
Please use the canonical form https://CRAN.R-project.org/package=mlr to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.