The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien

Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier, generalized k-nearest neighbour ...

Version: 1.7-16
Imports: graphics, grDevices, class, stats, methods, utils, proxy
Suggests: cluster, mlbench, nnet, randomForest, rpart, SparseM, xtable, Matrix, MASS, slam
Published: 2024-09-16
DOI: 10.32614/CRAN.package.e1071
Author: David Meyer ORCID iD [aut, cre], Evgenia Dimitriadou [aut, cph], Kurt Hornik ORCID iD [aut], Andreas Weingessel [aut], Friedrich Leisch [aut], Chih-Chung Chang [ctb, cph] (libsvm C++-code), Chih-Chen Lin [ctb, cph] (libsvm C++-code)
Maintainer: David Meyer <David.Meyer at R-project.org>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Materials: NEWS
In views: Cluster, Distributions, Environmetrics, MachineLearning, Psychometrics
CRAN checks: e1071 results

Documentation:

Reference manual: e1071.pdf
Vignettes: Support Vector Machines—the Interface to libsvm in package e1071 (source, R code)
svm() internals (source)

Downloads:

Package source: e1071_1.7-16.tar.gz
Windows binaries: r-devel: e1071_1.7-16.zip, r-release: e1071_1.7-16.zip, r-oldrel: e1071_1.7-16.zip
macOS binaries: r-release (arm64): e1071_1.7-16.tgz, r-oldrel (arm64): e1071_1.7-16.tgz, r-release (x86_64): e1071_1.7-16.tgz, r-oldrel (x86_64): e1071_1.7-16.tgz
Old sources: e1071 archive

Reverse dependencies:

Reverse depends: AIMS, BayesLCA, bios2mds, EMDSVRhybrid, GameTheoryAllocation, Inventorymodel, LedPred, malani, manymodelr, maPredictDSC, MARSSVRhybrid, Mfuzz, MTPS, penalizedSVM, RMediation, SigCheck, smacof, SwathXtend, TSSVM
Reverse imports: ADAPTS, AdaSampling, AriGaMyANNSVR, aRtsy, assignPOP, autoBagging, autoMrP, AutoPlots, aweSOM, BayesCVI, bayesrules, bindata, biosigner, BLRShiny, BLRShiny2, bnviewer, BoutrosLab.plotting.general, BPRMeth, BSDA, BubbleTree, BWGS, caret, cati, causalweight, CEEMDANML, cellity, chemometrics, classInt, classmap, cleanUpdTSeq, ClueR, clusterMI, clusterSim, CMShiny, CompositionalML, conformalpvalue, coseq, cpfa, CRImage, CTShiny, CTShiny2, cypress, cytofQC, dad, daltoolbox, DaMiRseq, DanielBiostatistics10th, DCATS, deconvR, Deducer, DeepLearningCausal, DemographicTable, DescribeDF, dfmirroR, dPCP, DPpack, DSWE, DTWBI, DTWUMI, DWLS, ebmc, ECoL, EcotoneFinder, Ecume, EEMDSVR, EnMCB, EnsembleBase, EpiDISH, epiNEM, EpiSemble, evalITR, EZtune, fairness, fasstr, FeatureTerminatoR, FFTrees, fgga, fitur, flip, flowCut, fmf, fMRIscrub, frechet, fsr, ftsa, FuzzyClass, FWRGB, GB5mcPred, geNetClassifier, geodiv, geomod, ggscidca, GHap, gld, GMDH2, granulator, GSA.UN, hda, hydroTSM, hyperoverlap, hypervolume, IGST, ImHD, ImML, Irescale, ISCA, KCSNBShiny, kebabs, KNNShiny, KnowSeq, less, lfl, LilRhino, live, LncFinder, LOST, m2b, MAI, MAIT, MaOEA, MAPFX, maskRangeR, MBMethPred, mcca, MEB, MEclustnet, MetabolomicsBasics, metaEnsembleR, MetaLandSim, MIAmaxent, mikropml, mildsvm, MiPP, mispr, mistral, mixAR, MixGHD, mldr.resampling, mlearning, mlmts, MMD, mmibain, mnem, MNLR, Modeler, ModTools, movieROC, MSclassifR, MSiP, mt, multiclassPairs, mxnorm, NanoMethViz, NBShiny, NBShiny2, NBShiny3, negligible, nempi, NeuroDecodeR, NicheBarcoding, nlcv, nlnet, noisemodel, nonet, NonProbEst, nproc, OddsPlotty, OncoSubtype, oncrawlR, OpEnHiMR, optBiomarker, ORION, PAA, paar, PASWR, PASWR2, Patterns, pheble, PhosR, pmartR, PosteriorBootstrap, preciseTAD, PredCRG, predkmeans, PredPsych, pRoloc, psBayesborrow, rADA, radiant.model, RAMClustR, RandPro, rasclass, RaSEn, rchemo, RclusTool, RcmdrMisc, RecordLinkage, rgnoisefilt, RMaCzek, Rmagpie, rminer, robCompositions, RobustPrediction, RSDA, RTextTools, RTIGER, sambia, sampleClassifier, SC3, scAnnotatR, scmap, scorecardModelUtils, scReClassify, sdcMicro, SeqSQC, sharpshootR, shattering, sigFeature, signeR, simPop, SimRDS, SixSigma, SLEMI, SMDIC, soilassessment, spdep, spm2, SPUTNIK, SSDM, ssr, sssc, stablelearner, StatDA, STFTS, stylo, SubCellBarCode, SVMDO, symbolicDA, tableone, TCseq, TestsSymmetry, theftdlc, TPMplt, traineR, traitstrap, trajmsm, transcriptR, TSGS, TSPred, TTAinterfaceTrendAnalysis, UniversalCVI, vaccine, vanquish, VFS, VIM, viper, visaOTR, visualpred, VMDML, WaveletML, WaveletSVR, WeibullFit, xLLiM, ZetaSuite
Reverse suggests: A3, ampir, autonomics, aVirtualTwins, bark, batchtools, BiodiversityR, breakDown, broom, butcher, c2c, catdata, ceterisParibus, classifly, ClassifyR, clue, ClustAssess, CMA, CNPS, coin, cola, condvis2, ConfusionTableR, cvms, CytoMethIC, diceR, easyalluvial, EventDetectR, ExplainPrediction, ezplot, familiar, FastImputation, fastml, fdm2id, FinTS, flacco, flowml, frbs, FRESA.CAD, fromo, fscaret, GAparsimony, GenericML, GROAN, HPiP, iBreakDown, iml, infinityFlow, IRon, klaR, languageR, MachineShop, misspi, MLInterfaces, MLmetrics, mlr, mlr3cluster, mlr3fselect, mlr3learners, mlr3shiny, mlr3tuningspaces, mlrCPO, MLSeq, mmb, moreparty, mpath, MultiRNAflow, NeuralSens, NHSRdatasets, opalr, paradox, partools, pathwayTMB, pdp, performanceEstimation, PheCAP, PhysicalActivity, PMCMRplus, pmml, posterior, purgeR, pvar, qeML, r2pmml, randomForestVIP, rattle, Rcmdr, RcmdrPlugin.NMBU, RcmdrPlugin.TeachStat, ReporterScore, RforProteomics, rScudo, RStoolbox, Rtropical, RWeka, scGPS, sense, sentometrics, sesame, shipunov, simglm, sits, ssc, SSLR, strip, strucchange, strucchangeRcpp, structToolbox, subsemble, SuperLearner, superMICE, superml, swag, tidybulk, tidyfit, TunePareto, UBL, utiml, varrank, vivid, WeightSVM
Reverse enhances: prediction, sfsmisc

Linking:

Please use the canonical form https://CRAN.R-project.org/package=e1071 to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.