The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

roseRF: ROSE Random Forests for Robust Semiparametric Efficient Estimation

ROSE (RObust Semiparametric Efficient) random forests for robust semiparametric efficient estimation in partially parametric models (containing generalised partially linear models). Details can be found in the paper by Young and Shah (2024) <doi:10.48550/arXiv.2410.03471>.

Version: 0.1.0
Depends: R (≥ 4.2.0)
Imports: caret (≥ 6.0.93), glmnet (≥ 4.1.6), keras, mgcv, mlr (≥ 2.19.1), ParamHelpers, ranger (≥ 0.14.1), grf, rpart, stats, tuneRanger (≥ 0.5), xgboost
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-10-11
DOI: 10.32614/CRAN.package.roseRF
Author: Elliot H. Young [aut, cre], Rajen D. Shah [aut]
Maintainer: Elliot H. Young <ey244 at cam.ac.uk>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: roseRF results

Documentation:

Reference manual: roseRF.pdf

Downloads:

Package source: roseRF_0.1.0.tar.gz
Windows binaries: r-devel: roseRF_0.1.0.zip, r-release: roseRF_0.1.0.zip, r-oldrel: roseRF_0.1.0.zip
macOS binaries: r-release (arm64): roseRF_0.1.0.tgz, r-oldrel (arm64): roseRF_0.1.0.tgz, r-release (x86_64): roseRF_0.1.0.tgz, r-oldrel (x86_64): roseRF_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=roseRF to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.