The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

sparseDFM: Estimate Dynamic Factor Models with Sparse Loadings

Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <doi:10.48550/arXiv.2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in 'C++' and linked to R via 'RcppArmadillo'.

Version: 1.0
Depends: R (≥ 3.3.0)
Imports: Rcpp (≥ 1.0.9), Matrix, ggplot2
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, gridExtra
Published: 2023-03-23
DOI: 10.32614/CRAN.package.sparseDFM
Author: Luke Mosley [aut], Tak-Shing Chan [aut], Alex Gibberd [aut, cre]
Maintainer: Alex Gibberd <a.gibberd at lancaster.ac.uk>
License: GPL (≥ 3)
NeedsCompilation: yes
In views: TimeSeries
CRAN checks: sparseDFM results

Documentation:

Reference manual: sparseDFM.pdf
Vignettes: Using sparseDFM - Nowcasting UK Trade in Goods (Exports)
Using sparseDFM - Inflation Example

Downloads:

Package source: sparseDFM_1.0.tar.gz
Windows binaries: r-devel: sparseDFM_1.0.zip, r-release: sparseDFM_1.0.zip, r-oldrel: sparseDFM_1.0.zip
macOS binaries: r-release (arm64): sparseDFM_1.0.tgz, r-oldrel (arm64): sparseDFM_1.0.tgz, r-release (x86_64): sparseDFM_1.0.tgz, r-oldrel (x86_64): sparseDFM_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=sparseDFM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.