The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

ordinalbayes: Bayesian Ordinal Regression for High-Dimensional Data

Provides a function for fitting various penalized Bayesian cumulative link ordinal response models when the number of parameters exceeds the sample size. These models have been described in Zhang and Archer (2021) <doi:10.1186/s12859-021-04432-w>.

Version: 0.1.1
Depends: DESeq2, R (≥ 2.10), SummarizedExperiment
Imports: coda, devtools, dclone, runjags
Suggests: knitr, Biobase, testthat (≥ 3.0.0), rmarkdown
Published: 2022-04-06
DOI: 10.32614/CRAN.package.ordinalbayes
Author: Kellie J. Archer ORCID iD [aut, cre], Anna Seffernick [ctb], Shuai Sun [ctb], Yiran Zhang [aut]
Maintainer: Kellie J. Archer <archer.43 at osu.edu>
BugReports: https://github.com/kelliejarcher/ordinalbayes/issues
License: MIT + file LICENSE
URL: https://github.com/kelliejarcher/ordinalbayes
NeedsCompilation: no
SystemRequirements: JAGS (>= 4.0.0)
Citation: ordinalbayes citation info
Materials: README
CRAN checks: ordinalbayes results

Documentation:

Reference manual: ordinalbayes.pdf
Vignettes: ordinalbayes: Bayesian Ordinal Regression for High-Dimensional Data

Downloads:

Package source: ordinalbayes_0.1.1.tar.gz
Windows binaries: r-devel: ordinalbayes_0.1.1.zip, r-release: ordinalbayes_0.1.1.zip, r-oldrel: ordinalbayes_0.1.1.zip
macOS binaries: r-release (arm64): ordinalbayes_0.1.1.tgz, r-oldrel (arm64): ordinalbayes_0.1.1.tgz, r-release (x86_64): ordinalbayes_0.1.1.tgz, r-oldrel (x86_64): ordinalbayes_0.1.1.tgz
Old sources: ordinalbayes archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ordinalbayes to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.