The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

BayesGP: Efficient Implementation of Gaussian Process in Bayesian Hierarchical Models

Implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.

Version: 0.1.3
Depends: R (≥ 3.6.0)
Imports: TMB (≥ 1.9.7), numDeriv, rstan, sfsmisc, Matrix (≥ 1.6.3), aghq (≥ 0.4.1), fda, tmbstan, LaplacesDemon, methods
LinkingTo: TMB (≥ 1.9.7), RcppEigen
Suggests: rmarkdown, knitr, survival, testthat (≥ 3.0.0)
Published: 2024-11-12
DOI: 10.32614/CRAN.package.BayesGP
Author: Ziang Zhang [aut, cre], Yongwei Lin [aut], Alex Stringer [aut], Patrick Brown [aut]
Maintainer: Ziang Zhang <ziangzhang at uchicago.edu>
License: GPL (≥ 3)
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: BayesGP results

Documentation:

Reference manual: BayesGP.pdf
Vignettes: BayesGP: Partial Likelihood (source, R code)
BayesGP: COVID-19 Example (source, R code)
BayesGP: Fitting sGP (source, R code)

Downloads:

Package source: BayesGP_0.1.3.tar.gz
Windows binaries: r-devel: BayesGP_0.1.3.zip, r-release: BayesGP_0.1.3.zip, r-oldrel: BayesGP_0.1.3.zip
macOS binaries: r-release (arm64): BayesGP_0.1.3.tgz, r-oldrel (arm64): BayesGP_0.1.3.tgz, r-release (x86_64): BayesGP_0.1.3.tgz, r-oldrel (x86_64): BayesGP_0.1.3.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BayesGP to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.