Last updated on 2025-09-04 09:51:31 CEST.
Package | ERROR | NOTE | OK |
---|---|---|---|
alphavantager | 13 | ||
anomalize | 13 | ||
correlationfunnel | 2 | 11 | |
modeltime | 13 | ||
modeltime.ensemble | 2 | 11 | |
modeltime.resample | 4 | 9 | |
sweep | 13 | ||
tidyquant | 13 | ||
timetk | 13 |
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: NOTE: 2, OK: 11
Version: 0.2.0
Check: dependencies in R code
Result: NOTE
Namespace in Imports field not imported from: ‘utils’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Current CRAN status: OK: 13
Current CRAN status: ERROR: 2, OK: 11
Version: 1.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [164s/302s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.ensemble)
Loading required package: modeltime.resample
> library(modeltime.resample)
>
> # Model dependencies
> library(xgboost)
Attaching package: 'xgboost'
The following object is masked from 'package:dplyr':
slice
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.ensemble")
── Modeltime Ensemble ───────────────────────────────────────────
Ensemble of 3 Models (WEIGHTED)
# Modeltime Table
# A tibble: 3 × 4
.model_id .model .model_desc .loadings
<int> <list> <chr> <dbl>
1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12] 0.5
2 2 <workflow> PROPHET 0.333
3 3 <workflow> GLMNET 0.167
[ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ]
══ Skipped tests (4) ═══════════════════════════════════════════════════════════
• On CRAN (4): 'test-conf_by_id.R:6:5', 'test-ensemble_average.R:57:5',
'test-ensemble_model_spec.R:55:5', 'test-nested-ensembles.R:189:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-panel-data.R:175:5'): ensemble_model_spec(): Forecast Jumbled ──
Error in `model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)`: invalid type (list) for variable '.model_id_1'
Backtrace:
▆
1. ├─resample_tscv %>% ... at test-panel-data.R:175:5
2. ├─modeltime.ensemble::ensemble_model_spec(...)
3. ├─modeltime.ensemble:::ensemble_model_spec.mdl_time_tbl(...)
4. │ └─modeltime.ensemble:::generate_stacking_results(...)
5. │ └─wflw_spec %>% generics::fit(data_prepared_tbl)
6. ├─generics::fit(., data_prepared_tbl)
7. ├─workflows:::fit.workflow(., data_prepared_tbl)
8. │ └─workflows::.fit_model(workflow, control)
9. │ ├─generics::fit(action_model, workflow = workflow, control = control)
10. │ └─workflows:::fit.action_model(...)
11. │ └─workflows:::fit_from_xy(spec, mold, case_weights, control_parsnip)
12. │ ├─generics::fit_xy(...)
13. │ └─parsnip::fit_xy.model_spec(...)
14. │ └─parsnip:::xy_form(...)
15. │ └─parsnip:::form_form(...)
16. │ └─parsnip:::eval_mod(...)
17. │ └─rlang::eval_tidy(e, env = envir, ...)
18. └─stats::lm(formula = ..y ~ ., data = data)
19. └─base::eval(mf, parent.frame())
20. └─base::eval(mf, parent.frame())
21. ├─stats::model.frame(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)
22. └─stats::model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)
[ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ]
Error: Test failures
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 1.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [154s/217s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.ensemble)
Loading required package: modeltime.resample
> library(modeltime.resample)
>
> # Model dependencies
> library(xgboost)
Attaching package: 'xgboost'
The following object is masked from 'package:dplyr':
slice
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.ensemble")
── Modeltime Ensemble ───────────────────────────────────────────
Ensemble of 3 Models (WEIGHTED)
# Modeltime Table
# A tibble: 3 × 4
.model_id .model .model_desc .loadings
<int> <list> <chr> <dbl>
1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12] 0.5
2 2 <workflow> PROPHET 0.333
3 3 <workflow> GLMNET 0.167
[ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ]
══ Skipped tests (4) ═══════════════════════════════════════════════════════════
• On CRAN (4): 'test-conf_by_id.R:6:5', 'test-ensemble_average.R:57:5',
'test-ensemble_model_spec.R:55:5', 'test-nested-ensembles.R:189:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-panel-data.R:175:5'): ensemble_model_spec(): Forecast Jumbled ──
Error in `model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)`: invalid type (list) for variable '.model_id_1'
Backtrace:
▆
1. ├─resample_tscv %>% ... at test-panel-data.R:175:5
2. ├─modeltime.ensemble::ensemble_model_spec(...)
3. ├─modeltime.ensemble:::ensemble_model_spec.mdl_time_tbl(...)
4. │ └─modeltime.ensemble:::generate_stacking_results(...)
5. │ └─wflw_spec %>% generics::fit(data_prepared_tbl)
6. ├─generics::fit(., data_prepared_tbl)
7. ├─workflows:::fit.workflow(., data_prepared_tbl)
8. │ └─workflows::.fit_model(workflow, control)
9. │ ├─generics::fit(action_model, workflow = workflow, control = control)
10. │ └─workflows:::fit.action_model(...)
11. │ └─workflows:::fit_from_xy(spec, mold, case_weights, control_parsnip)
12. │ ├─generics::fit_xy(...)
13. │ └─parsnip::fit_xy.model_spec(...)
14. │ └─parsnip:::xy_form(...)
15. │ └─parsnip:::form_form(...)
16. │ └─parsnip:::eval_mod(...)
17. │ └─rlang::eval_tidy(e, env = envir, ...)
18. └─stats::lm(formula = ..y ~ ., data = data)
19. └─base::eval(mf, parent.frame())
20. └─base::eval(mf, parent.frame())
21. ├─stats::model.frame(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)
22. └─stats::model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)
[ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ]
Error: Test failures
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Current CRAN status: ERROR: 4, OK: 9
Version: 0.2.4
Check: examples
Result: ERROR
Running examples in ‘modeltime.resample-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: plot_modeltime_resamples
> ### Title: Interactive Resampling Accuracy Plots
> ### Aliases: plot_modeltime_resamples
>
> ### ** Examples
>
>
> m750_training_resamples_fitted %>%
+ plot_modeltime_resamples(
+ .interactive = FALSE
+ )
Error in `metric_set()`:
! Failed to compute `mae()`.
Caused by error:
! Can't select columns that don't exist.
✖ Column `.pred` doesn't exist.
Backtrace:
▆
1. ├─m750_training_resamples_fitted %>% ...
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = FALSE)
3. │ └─... %>% dplyr::ungroup()
4. ├─dplyr::ungroup(.)
5. ├─dplyr::mutate(., ..summary_fn = summary_fn_partial(.estimate))
6. ├─dplyr::group_by(., .model_desc, .metric)
7. ├─dplyr::mutate(., .metric = as.factor(.metric))
8. ├─dplyr::ungroup(.)
9. ├─yardstick (local) .metric_set(., .value, .pred)
10. │ └─base::mapply(...)
11. │ └─yardstick (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]])
12. │ ├─base::tryCatch(...)
13. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers)
14. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]])
15. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler)
16. │ └─rlang::eval_tidy(expr, data = data, env = env)
17. ├─yardstick (local) `<nmrc_mtr>`(...)
18. ├─yardstick:::mae.data.frame(...)
19. │ └─yardstick::numeric_metric_summarizer(...)
20. │ └─yardstick:::yardstick_eval_select(...)
21. │ └─tidyselect::eval_select(...)
22. │ └─tidyselect:::eval_select_impl(...)
23. │ ├─tidyselect:::with_subscript_errors(...)
24. │ │ └─base::withCallingHandlers(...)
25. │ └─tidyselect:::vars_select_eval(...)
26. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
27. │ └─tidyselect:::as_indices_sel_impl(...)
28. │ └─tidyselect:::as_indices_impl(...)
29. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
30. │ └─vctrs::vec_as_location(...)
31. └─vctrs (local) `<fn>`()
32. └─vctrs:::stop_subscript_oob(...)
33. └─vctrs:::stop_subscript(...)
34. └─rlang::abort(...)
Execution halted
Flavors: r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64
Version: 0.2.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [13s/15s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.resample)
>
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.resample")
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-modeltime_fit_resamples.R:39:5'): Structure: modeltime_fit_resamples() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─modeltime.resample::unnest_modeltime_resamples(m750_models_resample) at test-modeltime_fit_resamples.R:39:5
2. │ └─... %>% dplyr::bind_rows()
3. ├─dplyr::bind_rows(.)
4. │ └─rlang::list2(...)
5. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
6. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
7. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
8. ├─dplyr::group_split(., .model_id)
9. ├─tidyr::unnest(., .predictions)
10. ├─dplyr::rename(., .resample_id = id)
11. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
12. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
13. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
14. │ └─tidyselect:::eval_select_impl(...)
15. │ ├─tidyselect:::with_subscript_errors(...)
16. │ │ └─base::withCallingHandlers(...)
17. │ └─tidyselect:::vars_select_eval(...)
18. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
19. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
20. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
21. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
22. │ └─tidyselect:::as_indices_sel_impl(...)
23. │ └─tidyselect:::as_indices_impl(...)
24. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
25. │ └─vctrs::vec_as_location(...)
26. └─vctrs (local) `<fn>`()
27. └─vctrs:::stop_subscript_oob(...)
28. └─vctrs:::stop_subscript(...)
29. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:73:5'): Structure:: modeltime_resample_accuracy() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% modeltime_resample_accuracy() at test-modeltime_fit_resamples.R:73:5
2. ├─modeltime.resample::modeltime_resample_accuracy(.)
3. │ └─modeltime.resample::unnest_modeltime_resamples(object)
4. │ └─... %>% dplyr::bind_rows()
5. ├─dplyr::bind_rows(.)
6. │ └─rlang::list2(...)
7. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
8. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
9. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
10. ├─dplyr::group_split(., .model_id)
11. ├─tidyr::unnest(., .predictions)
12. ├─dplyr::rename(., .resample_id = id)
13. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
14. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
15. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
16. │ └─tidyselect:::eval_select_impl(...)
17. │ ├─tidyselect:::with_subscript_errors(...)
18. │ │ └─base::withCallingHandlers(...)
19. │ └─tidyselect:::vars_select_eval(...)
20. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
21. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
22. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
23. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
24. │ └─tidyselect:::as_indices_sel_impl(...)
25. │ └─tidyselect:::as_indices_impl(...)
26. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
27. │ └─vctrs::vec_as_location(...)
28. └─vctrs (local) `<fn>`()
29. └─vctrs:::stop_subscript_oob(...)
30. └─vctrs:::stop_subscript(...)
31. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:113:5'): plot_modeltime_resamples() works ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% ... at test-modeltime_fit_resamples.R:113:5
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = TRUE)
3. │ └─.data %>% dplyr::ungroup() %>% unnest_modeltime_resamples()
4. ├─modeltime.resample::unnest_modeltime_resamples(.)
5. │ └─... %>% dplyr::bind_rows()
6. ├─dplyr::bind_rows(.)
7. │ └─rlang::list2(...)
8. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
9. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
10. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
11. ├─dplyr::group_split(., .model_id)
12. ├─tidyr::unnest(., .predictions)
13. ├─dplyr::rename(., .resample_id = id)
14. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
15. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
16. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
17. │ └─tidyselect:::eval_select_impl(...)
18. │ ├─tidyselect:::with_subscript_errors(...)
19. │ │ └─base::withCallingHandlers(...)
20. │ └─tidyselect:::vars_select_eval(...)
21. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
22. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
23. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
24. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
25. │ └─tidyselect:::as_indices_sel_impl(...)
26. │ └─tidyselect:::as_indices_impl(...)
27. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
28. │ └─vctrs::vec_as_location(...)
29. └─vctrs (local) `<fn>`()
30. └─vctrs:::stop_subscript_oob(...)
31. └─vctrs:::stop_subscript(...)
32. └─rlang::abort(...)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
Error: Test failures
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.2.4
Check: re-building of vignette outputs
Result: ERROR
Error(s) in re-building vignettes:
...
--- re-building ‘getting-started.Rmd’ using rmarkdown
Quitting from getting-started.Rmd:131-138 [unnamed-chunk-8]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NULL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'getting-started.Rmd' failed with diagnostics:
Can't select columns that don't exist.
✖ Column `id` doesn't exist.
--- failed re-building ‘getting-started.Rmd’
--- re-building ‘panel-data.Rmd’ using rmarkdown
Quitting from panel-data.Rmd:280-287 [unnamed-chunk-16]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NULL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'panel-data.Rmd' failed with diagnostics:
Failed to compute `mae()`.
Caused by error:
! Can't select columns that don't exist.
✖ Column `.pred` doesn't exist.
--- failed re-building ‘panel-data.Rmd’
SUMMARY: processing the following files failed:
‘getting-started.Rmd’ ‘panel-data.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64
Version: 0.2.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [18s/22s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.resample)
>
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.resample")
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-modeltime_fit_resamples.R:39:5'): Structure: modeltime_fit_resamples() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─modeltime.resample::unnest_modeltime_resamples(m750_models_resample) at test-modeltime_fit_resamples.R:39:5
2. │ └─... %>% dplyr::bind_rows()
3. ├─dplyr::bind_rows(.)
4. │ └─rlang::list2(...)
5. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
6. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
7. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
8. ├─dplyr::group_split(., .model_id)
9. ├─tidyr::unnest(., .predictions)
10. ├─dplyr::rename(., .resample_id = id)
11. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
12. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
13. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
14. │ └─tidyselect:::eval_select_impl(...)
15. │ ├─tidyselect:::with_subscript_errors(...)
16. │ │ └─base::withCallingHandlers(...)
17. │ └─tidyselect:::vars_select_eval(...)
18. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
19. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
20. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
21. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
22. │ └─tidyselect:::as_indices_sel_impl(...)
23. │ └─tidyselect:::as_indices_impl(...)
24. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
25. │ └─vctrs::vec_as_location(...)
26. └─vctrs (local) `<fn>`()
27. └─vctrs:::stop_subscript_oob(...)
28. └─vctrs:::stop_subscript(...)
29. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:73:5'): Structure:: modeltime_resample_accuracy() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% modeltime_resample_accuracy() at test-modeltime_fit_resamples.R:73:5
2. ├─modeltime.resample::modeltime_resample_accuracy(.)
3. │ └─modeltime.resample::unnest_modeltime_resamples(object)
4. │ └─... %>% dplyr::bind_rows()
5. ├─dplyr::bind_rows(.)
6. │ └─rlang::list2(...)
7. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
8. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
9. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
10. ├─dplyr::group_split(., .model_id)
11. ├─tidyr::unnest(., .predictions)
12. ├─dplyr::rename(., .resample_id = id)
13. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
14. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
15. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
16. │ └─tidyselect:::eval_select_impl(...)
17. │ ├─tidyselect:::with_subscript_errors(...)
18. │ │ └─base::withCallingHandlers(...)
19. │ └─tidyselect:::vars_select_eval(...)
20. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
21. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
22. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
23. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
24. │ └─tidyselect:::as_indices_sel_impl(...)
25. │ └─tidyselect:::as_indices_impl(...)
26. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
27. │ └─vctrs::vec_as_location(...)
28. └─vctrs (local) `<fn>`()
29. └─vctrs:::stop_subscript_oob(...)
30. └─vctrs:::stop_subscript(...)
31. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:113:5'): plot_modeltime_resamples() works ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% ... at test-modeltime_fit_resamples.R:113:5
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = TRUE)
3. │ └─.data %>% dplyr::ungroup() %>% unnest_modeltime_resamples()
4. ├─modeltime.resample::unnest_modeltime_resamples(.)
5. │ └─... %>% dplyr::bind_rows()
6. ├─dplyr::bind_rows(.)
7. │ └─rlang::list2(...)
8. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
9. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
10. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
11. ├─dplyr::group_split(., .model_id)
12. ├─tidyr::unnest(., .predictions)
13. ├─dplyr::rename(., .resample_id = id)
14. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
15. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
16. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
17. │ └─tidyselect:::eval_select_impl(...)
18. │ ├─tidyselect:::with_subscript_errors(...)
19. │ │ └─base::withCallingHandlers(...)
20. │ └─tidyselect:::vars_select_eval(...)
21. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
22. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
23. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
24. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
25. │ └─tidyselect:::as_indices_sel_impl(...)
26. │ └─tidyselect:::as_indices_impl(...)
27. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
28. │ └─vctrs::vec_as_location(...)
29. └─vctrs (local) `<fn>`()
30. └─vctrs:::stop_subscript_oob(...)
31. └─vctrs:::stop_subscript(...)
32. └─rlang::abort(...)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
Error: Test failures
Execution halted
Flavor: r-patched-linux-x86_64
Version: 0.2.4
Check: examples
Result: ERROR
Running examples in 'modeltime.resample-Ex.R' failed
The error most likely occurred in:
> ### Name: plot_modeltime_resamples
> ### Title: Interactive Resampling Accuracy Plots
> ### Aliases: plot_modeltime_resamples
>
> ### ** Examples
>
>
> m750_training_resamples_fitted %>%
+ plot_modeltime_resamples(
+ .interactive = FALSE
+ )
Error in `metric_set()`:
! Failed to compute `mae()`.
Caused by error:
! Can't select columns that don't exist.
✖ Column `.pred` doesn't exist.
Backtrace:
▆
1. ├─m750_training_resamples_fitted %>% ...
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = FALSE)
3. │ └─... %>% dplyr::ungroup()
4. ├─dplyr::ungroup(.)
5. ├─dplyr::mutate(., ..summary_fn = summary_fn_partial(.estimate))
6. ├─dplyr::group_by(., .model_desc, .metric)
7. ├─dplyr::mutate(., .metric = as.factor(.metric))
8. ├─dplyr::ungroup(.)
9. ├─yardstick (local) .metric_set(., .value, .pred)
10. │ └─base::mapply(...)
11. │ └─yardstick (local) `<fn>`(dots[[1L]][[1L]], dots[[2L]][[1L]])
12. │ ├─base::tryCatch(...)
13. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers)
14. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]])
15. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler)
16. │ └─rlang::eval_tidy(expr, data = data, env = env)
17. ├─yardstick (local) `<nmrc_mtr>`(...)
18. ├─yardstick:::mae.data.frame(...)
19. │ └─yardstick::numeric_metric_summarizer(...)
20. │ └─yardstick:::yardstick_eval_select(...)
21. │ └─tidyselect::eval_select(...)
22. │ └─tidyselect:::eval_select_impl(...)
23. │ ├─tidyselect:::with_subscript_errors(...)
24. │ │ └─base::withCallingHandlers(...)
25. │ └─tidyselect:::vars_select_eval(...)
26. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
27. │ └─tidyselect:::as_indices_sel_impl(...)
28. │ └─tidyselect:::as_indices_impl(...)
29. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
30. │ └─vctrs::vec_as_location(...)
31. └─vctrs (local) `<fn>`()
32. └─vctrs:::stop_subscript_oob(...)
33. └─vctrs:::stop_subscript(...)
34. └─rlang::abort(...)
Execution halted
Flavors: r-release-windows-x86_64, r-oldrel-windows-x86_64
Version: 0.2.4
Check: tests
Result: ERROR
Running 'testthat.R' [15s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.resample)
>
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.resample")
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-modeltime_fit_resamples.R:39:5'): Structure: modeltime_fit_resamples() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─modeltime.resample::unnest_modeltime_resamples(m750_models_resample) at test-modeltime_fit_resamples.R:39:5
2. │ └─... %>% dplyr::bind_rows()
3. ├─dplyr::bind_rows(.)
4. │ └─rlang::list2(...)
5. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
6. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
7. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
8. ├─dplyr::group_split(., .model_id)
9. ├─tidyr::unnest(., .predictions)
10. ├─dplyr::rename(., .resample_id = id)
11. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
12. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
13. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
14. │ └─tidyselect:::eval_select_impl(...)
15. │ ├─tidyselect:::with_subscript_errors(...)
16. │ │ └─base::withCallingHandlers(...)
17. │ └─tidyselect:::vars_select_eval(...)
18. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
19. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
20. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
21. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
22. │ └─tidyselect:::as_indices_sel_impl(...)
23. │ └─tidyselect:::as_indices_impl(...)
24. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
25. │ └─vctrs::vec_as_location(...)
26. └─vctrs (local) `<fn>`()
27. └─vctrs:::stop_subscript_oob(...)
28. └─vctrs:::stop_subscript(...)
29. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:73:5'): Structure:: modeltime_resample_accuracy() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% modeltime_resample_accuracy() at test-modeltime_fit_resamples.R:73:5
2. ├─modeltime.resample::modeltime_resample_accuracy(.)
3. │ └─modeltime.resample::unnest_modeltime_resamples(object)
4. │ └─... %>% dplyr::bind_rows()
5. ├─dplyr::bind_rows(.)
6. │ └─rlang::list2(...)
7. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
8. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
9. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
10. ├─dplyr::group_split(., .model_id)
11. ├─tidyr::unnest(., .predictions)
12. ├─dplyr::rename(., .resample_id = id)
13. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
14. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
15. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
16. │ └─tidyselect:::eval_select_impl(...)
17. │ ├─tidyselect:::with_subscript_errors(...)
18. │ │ └─base::withCallingHandlers(...)
19. │ └─tidyselect:::vars_select_eval(...)
20. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
21. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
22. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
23. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
24. │ └─tidyselect:::as_indices_sel_impl(...)
25. │ └─tidyselect:::as_indices_impl(...)
26. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
27. │ └─vctrs::vec_as_location(...)
28. └─vctrs (local) `<fn>`()
29. └─vctrs:::stop_subscript_oob(...)
30. └─vctrs:::stop_subscript(...)
31. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:113:5'): plot_modeltime_resamples() works ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% ... at test-modeltime_fit_resamples.R:113:5
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = TRUE)
3. │ └─.data %>% dplyr::ungroup() %>% unnest_modeltime_resamples()
4. ├─modeltime.resample::unnest_modeltime_resamples(.)
5. │ └─... %>% dplyr::bind_rows()
6. ├─dplyr::bind_rows(.)
7. │ └─rlang::list2(...)
8. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
9. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
10. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
11. ├─dplyr::group_split(., .model_id)
12. ├─tidyr::unnest(., .predictions)
13. ├─dplyr::rename(., .resample_id = id)
14. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
15. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
16. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
17. │ └─tidyselect:::eval_select_impl(...)
18. │ ├─tidyselect:::with_subscript_errors(...)
19. │ │ └─base::withCallingHandlers(...)
20. │ └─tidyselect:::vars_select_eval(...)
21. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
22. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
23. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
24. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
25. │ └─tidyselect:::as_indices_sel_impl(...)
26. │ └─tidyselect:::as_indices_impl(...)
27. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
28. │ └─vctrs::vec_as_location(...)
29. └─vctrs (local) `<fn>`()
30. └─vctrs:::stop_subscript_oob(...)
31. └─vctrs:::stop_subscript(...)
32. └─rlang::abort(...)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
Error: Test failures
Execution halted
Flavor: r-release-windows-x86_64
Version: 0.2.4
Check: re-building of vignette outputs
Result: ERROR
Error(s) in re-building vignettes:
--- re-building 'getting-started.Rmd' using rmarkdown
Quitting from getting-started.Rmd:131-138 [unnamed-chunk-8]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NULL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'getting-started.Rmd' failed with diagnostics:
Can't select columns that don't exist.
✖ Column `id` doesn't exist.
--- failed re-building 'getting-started.Rmd'
--- re-building 'panel-data.Rmd' using rmarkdown
Quitting from panel-data.Rmd:280-287 [unnamed-chunk-16]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NULL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'panel-data.Rmd' failed with diagnostics:
Failed to compute `mae()`.
Caused by error:
! Can't select columns that don't exist.
✖ Column `.pred` doesn't exist.
--- failed re-building 'panel-data.Rmd'
SUMMARY: processing the following files failed:
'getting-started.Rmd' 'panel-data.Rmd'
Error: Vignette re-building failed.
Execution halted
Flavors: r-release-windows-x86_64, r-oldrel-windows-x86_64
Version: 0.2.4
Check: tests
Result: ERROR
Running 'testthat.R' [20s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> library(testthat)
>
> # Machine Learning
> library(tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
✔ broom 1.0.9 ✔ recipes 1.3.1
✔ dials 1.4.1 ✔ rsample 1.3.1
✔ dplyr 1.1.4 ✔ tibble 3.3.0
✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
✔ infer 1.0.9 ✔ tune 2.0.0
✔ modeldata 1.5.1 ✔ workflows 1.3.0
✔ parsnip 1.3.3 ✔ workflowsets 1.1.1
✔ purrr 1.1.0 ✔ yardstick 1.3.2
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ purrr::is_null() masks testthat::is_null()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches()
✖ recipes::step() masks stats::step()
> library(modeltime)
> library(modeltime.resample)
>
> library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loaded glmnet 4.1-10
>
> # Core Packages
> library(timetk)
> library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
>
> test_check("modeltime.resample")
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-modeltime_fit_resamples.R:39:5'): Structure: modeltime_fit_resamples() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─modeltime.resample::unnest_modeltime_resamples(m750_models_resample) at test-modeltime_fit_resamples.R:39:5
2. │ └─... %>% dplyr::bind_rows()
3. ├─dplyr::bind_rows(.)
4. │ └─rlang::list2(...)
5. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
6. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
7. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
8. ├─dplyr::group_split(., .model_id)
9. ├─tidyr::unnest(., .predictions)
10. ├─dplyr::rename(., .resample_id = id)
11. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
12. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
13. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
14. │ └─tidyselect:::eval_select_impl(...)
15. │ ├─tidyselect:::with_subscript_errors(...)
16. │ │ └─base::withCallingHandlers(...)
17. │ └─tidyselect:::vars_select_eval(...)
18. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
19. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
20. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
21. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
22. │ └─tidyselect:::as_indices_sel_impl(...)
23. │ └─tidyselect:::as_indices_impl(...)
24. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
25. │ └─vctrs::vec_as_location(...)
26. └─vctrs (local) `<fn>`()
27. └─vctrs:::stop_subscript_oob(...)
28. └─vctrs:::stop_subscript(...)
29. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:73:5'): Structure:: modeltime_resample_accuracy() ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% modeltime_resample_accuracy() at test-modeltime_fit_resamples.R:73:5
2. ├─modeltime.resample::modeltime_resample_accuracy(.)
3. │ └─modeltime.resample::unnest_modeltime_resamples(object)
4. │ └─... %>% dplyr::bind_rows()
5. ├─dplyr::bind_rows(.)
6. │ └─rlang::list2(...)
7. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
8. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
9. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
10. ├─dplyr::group_split(., .model_id)
11. ├─tidyr::unnest(., .predictions)
12. ├─dplyr::rename(., .resample_id = id)
13. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
14. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
15. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
16. │ └─tidyselect:::eval_select_impl(...)
17. │ ├─tidyselect:::with_subscript_errors(...)
18. │ │ └─base::withCallingHandlers(...)
19. │ └─tidyselect:::vars_select_eval(...)
20. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
21. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
22. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
23. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
24. │ └─tidyselect:::as_indices_sel_impl(...)
25. │ └─tidyselect:::as_indices_impl(...)
26. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
27. │ └─vctrs::vec_as_location(...)
28. └─vctrs (local) `<fn>`()
29. └─vctrs:::stop_subscript_oob(...)
30. └─vctrs:::stop_subscript(...)
31. └─rlang::abort(...)
── Error ('test-modeltime_fit_resamples.R:113:5'): plot_modeltime_resamples() works ──
<vctrs_error_subscript_oob/vctrs_error_subscript/rlang_error/error/condition>
Error in `dplyr::select(., id, .model_id, .model_desc, .predictions)`: Can't select columns that don't exist.
✖ Column `id` doesn't exist.
Backtrace:
▆
1. ├─m750_models_resample %>% ... at test-modeltime_fit_resamples.R:113:5
2. ├─modeltime.resample::plot_modeltime_resamples(., .interactive = TRUE)
3. │ └─.data %>% dplyr::ungroup() %>% unnest_modeltime_resamples()
4. ├─modeltime.resample::unnest_modeltime_resamples(.)
5. │ └─... %>% dplyr::bind_rows()
6. ├─dplyr::bind_rows(.)
7. │ └─rlang::list2(...)
8. ├─purrr::map(., tibble::rowid_to_column, var = ".row_id")
9. │ └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
10. │ └─purrr:::vctrs_vec_compat(.x, .purrr_user_env)
11. ├─dplyr::group_split(., .model_id)
12. ├─tidyr::unnest(., .predictions)
13. ├─dplyr::rename(., .resample_id = id)
14. ├─dplyr::select(., id, .model_id, .model_desc, .predictions)
15. ├─dplyr:::select.data.frame(., id, .model_id, .model_desc, .predictions)
16. │ └─tidyselect::eval_select(expr(c(...)), data = .data, error_call = error_call)
17. │ └─tidyselect:::eval_select_impl(...)
18. │ ├─tidyselect:::with_subscript_errors(...)
19. │ │ └─base::withCallingHandlers(...)
20. │ └─tidyselect:::vars_select_eval(...)
21. │ └─tidyselect:::walk_data_tree(expr, data_mask, context_mask)
22. │ └─tidyselect:::eval_c(expr, data_mask, context_mask)
23. │ └─tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
24. │ └─tidyselect:::walk_data_tree(new, data_mask, context_mask)
25. │ └─tidyselect:::as_indices_sel_impl(...)
26. │ └─tidyselect:::as_indices_impl(...)
27. │ └─tidyselect:::chr_as_locations(x, vars, call = call, arg = arg)
28. │ └─vctrs::vec_as_location(...)
29. └─vctrs (local) `<fn>`()
30. └─vctrs:::stop_subscript_oob(...)
31. └─vctrs:::stop_subscript(...)
32. └─rlang::abort(...)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 6 ]
Error: Test failures
Execution halted
Flavor: r-oldrel-windows-x86_64
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: OK: 13
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.