The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Provides functionality to perform machine-learning-based modeling in a computation pipeline. Its functions contain the basic steps of machine-learning-based knowledge discovery workflows, including model training and optimization, model evaluation, and model testing. To perform these tasks, the package builds heavily on existing machine-learning packages, such as 'caret' <https://github.com/topepo/caret/> and associated packages. The package can train multiple models, optimize model hyperparameters by performing a grid search or a random search, and evaluates model performance by different metrics. Models can be validated either on a test data set, or in case of a small sample size by k-fold cross validation or repeated bootstrapping. It also allows for 0-Hypotheses generation by performing permutation experiments. Additionally, it offers methods of model interpretation and item categorization to identify the most informative features from a high dimensional data space. The functions of this package can easily be integrated into computation pipelines (e.g. 'nextflow' <https://www.nextflow.io/>) and hereby improve scalability, standardization, and re-producibility in the context of machine-learning.
Reference manual: | flowml.pdf |
Package source: | flowml_0.1.3.tar.gz |
Windows binaries: | r-devel: flowml_0.1.3.zip, r-release: flowml_0.1.3.zip, r-oldrel: flowml_0.1.3.zip |
macOS binaries: | r-release (arm64): flowml_0.1.3.tgz, r-oldrel (arm64): flowml_0.1.3.tgz, r-release (x86_64): flowml_0.1.3.tgz, r-oldrel (x86_64): flowml_0.1.3.tgz |
Old sources: | flowml archive |
Please use the canonical form https://CRAN.R-project.org/package=flowml to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.